Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(11)2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35682825

RESUMEN

Adsorption is an economical and efficient method for wastewater treatment, and its advantages are closely related to adsorbents. Herein, the Abutilon theophrasti medicus calyx (AC) was used as the precursor for producing the porous carbon adsorbent (PCAC). PCAC was prepared through carbonization and chemical activation. The product activated by potassium hydroxide exhibited a larger specific surface area, more mesopores, and a higher adsorption capacity than the product activated by sodium hydroxide. PCAC was used for adsorbing rhodamine B (RhB) and chloramphenicol (CAP) from water. Three adsorption kinetic models (the pseudo-first-order, pseudo-second-order, and intra-particle diffusion models), four adsorption isotherm models (the Langmuir, Freundlich, Sips, and Redlich-Peterson models), and thermodynamic equations were used to investigate adsorption processes. The pseudo-second kinetic and Sips isotherm models fit the experimental data well. The adsorption mechanism and the reusability of PCAC were also investigated. PCAC exhibited a large specific surface area. The maximum adsorption capacities (1883.3 mg g-1 for RhB and 1375.3 mg g-1 for CAP) of PCAC are higher than most adsorbents. Additionally, in the fixed bed experiments, PCAC exhibited good performance for the removal of RhB. These results indicated that PCAC was an adsorbent with the advantages of low-cost, a large specific surface area, and high performance.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Antibacterianos/farmacología , Carbono , Cloranfenicol , Concentración de Iones de Hidrógeno , Cinética , Porosidad , Termodinámica , Contaminantes Químicos del Agua/análisis
2.
Plant Dis ; 105(10): 3055-3062, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34743537

RESUMEN

Pine wilt disease is the most devastating pine disease caused by Bursaphelenchus xylophilus. Bursaphelenchus mucronatus is morphologically similar to B. xylophilus and geographically overlaps in its distribution. Although interspecific hybridization of the two nematodes has been performed in vitro, the dynamic regularity of hybrid formation and its risk in forests has not been well evaluated. In this study, a hybrid of B. xylophilus and Bursaphelenchus mucronatus mucronatus was identified in the laboratory and fields by molecular markers. The heterozygosity of ITS-5.8S loci for identification was unstable in the hybrid population, and the allele inherited from B. m. mucronatus was lost over several generations. We also provided evidence that hybrids existed in some new epidemic areas, while old epidemic areas were usually dominated by B. xylophilus. Hybrids could be generated when B. m. mucronatus was invaded by B. xylophilus, and the pathogenicity of the hybrids was similar to that of B. xylophilus. These findings may improve the understanding of the natural hybridization between B. xylophilus and B. m. mucronatus and pathogenic variation in pine wilt disease, providing new insights for future studies on disease detection, transmission, and quarantine.


Asunto(s)
Nematodos , Pinus , Tylenchida , Animales , Tylenchida/genética , Factores de Virulencia , Xylophilus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA