Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Phys Condens Matter ; 21(25): 254202, 2009 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-21828426

RESUMEN

A dimensional crossover of superconducting fluctuations in an external magnetic field, applied parallel to the layers, has been found for superconductor/ferromagnet bilayers of Nb/Cu(41)Ni(59). By lowering the temperature, a reduction of the superconducting nuclei size occurs. As soon as the size of the nuclei becomes smaller than the thickness of the superconducting bilayer structure, the dimensionality changes. The temperature dependence of the fluctuation conductivity exhibits a 2D behaviour in zero and weak magnetic fields in the vicinity of the critical temperature, switching to a 3D behaviour in a strong magnetic field at low temperatures.

2.
Phys Rev Lett ; 66(21): 2822-2825, 1991 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-10043625
4.
Phys Rev Lett ; 97(5): 057004, 2006 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-17026134

RESUMEN

We report on the first observation of a pronounced reentrant superconductivity phenomenon in a superconductor/ferromagnet layered system. The results were obtained using a superconductor/ferromagnetic-alloy bilayer of Nb/Cu(1-x)Ni(x). The superconducting transition temperature T(c) drops sharply with increasing thickness dCuNi) of the ferromagnetic layer, until complete suppression of superconductivity is observed at d(CuNi) approximately equal to 4 nm. Increasing the Cu(1-x)Ni(x) layer thickness further, superconductivity reappears at d(CuNi) > or =13 nm. Our experiments give evidence for the pairing function oscillations associated with a realization of the quasi-one-dimensional Fulde-Ferrell-Larkin-Ovchinnikov-like state in the ferromagnetic layer.

5.
Nat Mater ; 2(4): 247-52, 2003 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12690398

RESUMEN

'Colossal magnetoresistance' in perovskite manganites such as La0.7Ca0.3MnO3 (LCMO), is caused by the interplay of ferro-paramagnetic, metal-insulator and structural phase transitions. Moreover, different electronic phases can coexist on a very fine scale resulting in percolative electron transport. Here we report on (LCMO)1-x:(MgO)x (0 < x < or = 0.8) epitaxial nano-composite films in which the structure and magnetotransport properties of the manganite nanoclusters can be tuned by the tensile stress originating from the MgO second phase. With increasing x, the lattice of LCMO was found to expand, yielding a bulk tensile strain. The largest colossal magnetoresistance of 10(5)% was observed at the percolation threshold in the conductivity at xc 0.3, which is coupled to a structural phase transition from orthorhombic (0 < x < or 0.1) to rhombohedral R3c structure (0.33 < or = x < or = 0.8). An increase of the Curie temperature for the Rc phase was observed. These results may provide a general method for controlling the magnetotransport properties of manganite-based composite films by appropriate choice of the second phase.


Asunto(s)
Cristalización/métodos , Cristalografía/métodos , Compuestos Férricos/química , Óxido de Magnesio/química , Compuestos de Calcio/química , Conductividad Eléctrica , Transporte de Electrón , Ensayo de Materiales , Microscopía Electrónica de Rastreo , Conformación Molecular , Óxidos/química , Sensibilidad y Especificidad , Temperatura , Titanio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA