Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Angew Chem Int Ed Engl ; 62(26): e202303111, 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37069123

RESUMEN

Faradaic reactions including charge transfer are often accompanied with diffusion limitation inside the bulk. Conductive two-dimensional frameworks (2D MOFs) with a fast ion transport can combine both-charge transfer and fast diffusion inside their porous structure. To study remaining diffusion limitations caused by particle morphology, different synthesis routes of Cu-2,3,6,7,10,11-hexahydroxytriphenylene (Cu3 (HHTP)2 ), a copper-based 2D MOF, are used to obtain flake- and rod-like MOF particles. Both morphologies are systematically characterized and evaluated for redox-active Li+ ion storage. The redox mechanism is investigated by means of X-ray absorption spectroscopy, FTIR spectroscopy and in situ XRD. Both types are compared regarding kinetic properties for Li+ ion storage via cyclic voltammetry and impedance spectroscopy. A significant influence of particle morphology for 2D MOFs on kinetic aspects of electrochemical Li+ ion storage can be observed. This study opens the path for optimization of redox active porous structures to overcome diffusion limitations of Faradaic processes.


Asunto(s)
Cobre , Estructuras Metalorgánicas , Litio , Espectroscopía Dieléctrica , Difusión , Iones
2.
Chemphyschem ; 21(7): 605-609, 2020 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-32045082

RESUMEN

The proton conduction properties of a phosphonato-sulfonate-based coordination polymer are studied by impedance spectroscopy using a single crystal specimen. Two distinct conduction mechanisms are identified. Water-mediated conductance along the crystal surface occurs by mass transport, as evidenced by a high activation energy (0.54 eV). In addition, intrinsic conduction by proton 'hopping' through the interior of the crystal with a low activation energy (0.31 eV) is observed. This latter conduction is anisotropic with respect to the crystal structure and seems to occur through a channel along the c axis of the orthorhombic crystal. Proton conduction is assumed to be mediated by sulfonate groups and non-coordinating water molecules that are part of the crystal structure.

3.
Nanotechnology ; 31(44): 445601, 2020 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-32784272

RESUMEN

Micropatterned nanoporous aluminum oxide arrays are prepared on silicon wafer substrates by using photopolymerized poly(dimethylacrylamide) hydrogels as porogenic matrices. Hydrogel micropatterns are fabricated by spreading the prepolymer mixture on the substrate, followed by UV photopolymerization through a micropatterned mask. The hydrogel is covalently bonded to the substrate surface. Al2O3 is produced by swelling the hydrogel in a saturated aluminum nitrate solution and subsequent thermal conversion/calcination. As a result, micropatterned porous Al2O3 microdots with heights in µm range and large specific surface areas up to 274 m2 g-1 are obtained. Hence, the hydrogel fulfills a dual templating function, namely micropatterning and nanoporosity generation. The impact of varying the photopolymerization time on the properties of the products is studied. Samples are characterized by light and confocal laser scanning microscopy, scanning electron microscopy, energy-dispersive x-ray spectrometry, and Kr physisorption analysis.

4.
Nanotechnology ; 31(9): 095701, 2020 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-31703211

RESUMEN

Zinc oxide (ZnO) hollow spheres with defined morphology and micro-/nanostructure are prepared by a hydrothermal synthesis approach. The materials possess fine-leaved structures at their particle surface (nanowall hollow micro spheres). Morphology control is achieved by citric acid used as an additive in variable relative quantities during the synthesis. The structure formation is studied by various time-dependent ex situ methods, such as scanning electron microscopy, x-ray diffraction, and Raman spectroscopy. The fine-leaved surface structure is characterized by high-resolution transmission electron microscopy techniques (HRTEM, STEM), using a high-angle annular dark field detector, as well as by differential phase contrast analysis. In-depth structural characterization of the nanowalls by drop-by-drop ex situ FE-SEM analysis provides insight into possible structure formation mechanisms. Further investigation addresses the thermal stability of the particle morphology and the enhancement of the surface-to-volume ratio by heat treatment (examined by N2 physisorption).

5.
Phys Chem Chem Phys ; 19(16): 10326-10332, 2017 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-28332664

RESUMEN

The performance of many chemical gas-phase reactions is strongly influenced by the interaction of reactants with interfaces. Nanoporous materials, which exhibit pore diameters up to 100 nm and high specific surface areas, can be utilized to reduce the amount of cost-intensive materials (e.g. noble metals). However, due to limitations in material transport and reaction kinetics detailed knowledge of the diffusion and the kinetics of a chemical reaction is necessary to improve the performance of chemical processes in industry and research. To experimentally study the diffusion and reaction kinetics of gaseous species inside such pores, the chemoresistive behavior of certain metal oxides such as In2O3 can be utilized. In this work, we present a model system based on hierarchically porous monolithic indium oxide (In2O3) which allows the determination of kinetic effects by utilizing its gas transducing properties. The experimental data obtained by electrical measurements are compared to two diffusion and diffusion-reaction models. Using these methods, the rate constant of ozone decomposition in porous In2O3 is estimated. The results are the basis for a suitable material design for semiconducting gas sensors, on the nano-, meso- and macroscale, which helps in understanding the underlying mechanisms of diffusion and reaction.

6.
Phys Chem Chem Phys ; 17(33): 21634-42, 2015 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-26227316

RESUMEN

Metal-organic frameworks (MOFs) are crystalline microporous materials with tunable chemical and physical properties. By combining various metal clusters with different interconnecting organic linkers, the pore structure, crystallinity, as well as the surface properties can be modified. In the present work, modification of the organic linker molecules is utilized to synthesize CAU-10 type MOFs with variable affinity of the pore surface to water. In principle, this should influence the accessibility of the pores for water vapor and therefore offer a tool to control its sorption properties. For a deeper understanding we studied the water sorption characteristics and compared the results to the conductive and dielectric properties studied by impedance spectroscopy. Spectra in a wide frequency range from 1 mHz to 1 MHz were recorded. Data analysis is performed using the Havriliak-Negami model. The MOFs are also tested as sensitive layers for capacitive humidity sensing by correlating the change in permittivity of the materials with the amount of physisorbed water. Such an MOF-based sensor was tested with respect to environmental monitoring and compared to a commonly used commercial humidity sensor.

7.
Chem Soc Rev ; 42(9): 4036-53, 2013 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-23232579

RESUMEN

Ordered mesoporous materials have great potential in the field of gas sensing. Today various template-assisted synthesis methods facilitate the preparation of silica (SiO2) as well as numerous metal oxides with well-defined, uniform and regular pore systems. The unique nanostructural properties of such materials are particularly useful for their application as active layers in gas sensors based on various operating principles, such as capacitive, resistive, or optical sensing. This review summarizes the basic aspects of materials synthesis, discusses some structural properties relevant in gas sensing, and gives an overview of the literature on ordered mesoporous gas sensors.


Asunto(s)
Gases/análisis , Dióxido de Silicio/química , Tamaño de la Partícula , Porosidad , Dióxido de Silicio/síntesis química , Propiedades de Superficie
8.
ACS Sens ; 8(4): 1616-1623, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37017638

RESUMEN

The production of hydrogen and the utilization of biomass for sustainable concepts of energy conversion and storage require gas sensors that discriminate between hydrogen (H2) and carbon monoxide (CO). Mesoporous copper-ceria (Cu-CeO2) materials with large specific surface areas and uniform porosity are prepared by nanocasting, and their textural properties are characterized by N2 physisorption, powder XRD, scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray spectroscopy. The oxidation states of copper (Cu+, Cu2+) and cerium (Ce3+, Ce4+) are investigated by XPS. The materials are used as resistive gas sensors for H2 and CO. The sensors show a stronger response to CO than to H2 and low cross-sensitivity to humidity. Copper turns out to be a necessary component; copper-free ceria materials prepared by the same method show only poor sensing performance. By measuring both gases (CO and H2) simultaneously, it is shown that this behavior can be utilized for selective sensing of CO in the presence of H2.


Asunto(s)
Cerio , Gases , Catálisis , Cerio/química , Oxidación-Reducción , Hidrógeno
9.
RSC Adv ; 13(21): 14181-14189, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37180004

RESUMEN

Hydrothermal carbonization (HTC) is an efficient thermochemical method for the conversion of organic feedstock to carbonaceous solids. HTC of different saccharides is known to produce microspheres (MS) with mostly Gaussian size distribution, which are utilized as functional materials in various applications, both as pristine MS and as a precursor for hard carbon MS. Although the average size of the MS can be influenced by adjusting the process parameters, there is no reliable mechanism to affect their size distribution. Our results demonstrate that HTC of trehalose, in contrast to other saccharides, results in a distinctly bimodal sphere diameter distribution consisting of small spheres with diameters of (2.1 ± 0.2) µm and of large spheres with diameters of (10.4 ± 2.6) µm. Remarkably, after pyrolytic post-carbonization at 1000 °C the MS develop a multimodal pore size distribution with abundant macropores > 100 nm, mesopores > 10 nm and micropores < 2 nm, which were examined by small-angle X-ray scattering and visualized by charge-compensated helium ion microscopy. The bimodal size distribution and hierarchical porosity provide an extraordinary set of properties and potential variables for the tailored synthesis of hierarchical porous carbons, making trehalose-derived hard carbon MS a highly promising material for applications in catalysis, filtration, and energy storage devices.

10.
Chemistry ; 18(26): 8216-23, 2012 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-22592938

RESUMEN

A model is proposed for the drop in electronic resistance of n-type semiconducting indium oxide (In(2)O(3)) upon illumination with light (350 nm, 3.5 eV) as well as for the (light-enhanced) sensitivity of In(2)O(3) to oxidizing gases. Essential features of the model are photoreduction and a rate-limiting oxygen-diffusion step. Ordered, mesoporous In(2)O(3) with a high specific surface area serves as a versatile system for experimental studies. Analytical techniques comprise conductivity measurements under a controlled atmosphere (synthetic air, pure N(2)) and temperature-resolved in-situ Fourier transform infrared (FTIR) spectroscopy. IR measurements reveal that oxygen vacancies form a donor level 0.18 eV below the conduction band.

11.
Beilstein J Nanotechnol ; 13: 437-443, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35601537

RESUMEN

The proton conductivity of two coordination networks, [Mg(H2O)2(H3L)]·H2O and [Pb2(HL)]·H2O (H5L = (H2O3PCH2)2-NCH2-C6H4-SO3H), is investigated by AC impedance spectroscopy. Both materials contain the same phosphonato-sulfonate linker molecule, but have clearly different crystal structures, which has a strong effect on proton conductivity. In the Mg-based coordination network, dangling sulfonate groups are part of an extended hydrogen bonding network, facilitating a "proton hopping" with low activation energy; the material shows a moderate proton conductivity. In the Pb-based metal-organic framework, in contrast, no extended hydrogen bonding occurs, as the sulfonate groups coordinate to Pb2+, without forming hydrogen bonds; the proton conductivity is much lower in this material.

12.
Biomedicines ; 10(11)2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36428494

RESUMEN

Alzheimer's disease is one of the most common neurodegenerative diseases in the western population. The incidence of this disease increases with age. Rising life expectancy and the resulting increase in the ratio of elderly in the population are likely to exacerbate socioeconomic problems. Alzheimer's disease is a multifactorial disease. In addition to amyloidogenic processing leading to plaques, and tau pathology, but also other molecular causes such as oxidative stress or inflammation play a crucial role. We summarize the molecular mechanisms leading to Alzheimer's disease and which potential interventions are known to interfere with these mechanisms, focusing on nutritional approaches and physical activity but also the beneficial effects of cognition-oriented treatments with a focus on language and communication. Interestingly, recent findings also suggest a causal link between oral conditions, such as periodontitis or edentulism, and Alzheimer's disease, raising the question of whether dental intervention in Alzheimer's patients can be beneficial as well. Unfortunately, all previous single-domain interventions have been shown to have limited benefit to patients. However, the latest studies indicate that combining these efforts into multidomain approaches may have increased preventive or therapeutic potential. Therefore, as another emphasis in this review, we provide an overview of current literature dealing with studies combining the above-mentioned approaches and discuss potential advantages compared to monotherapies. Considering current literature and intervention options, we also propose a multidomain interdisciplinary approach for the treatment of Alzheimer's disease patients that synergistically links the individual approaches. In conclusion, this review highlights the need to combine different approaches in an interdisciplinary manner, to address the future challenges of Alzheimer's disease.

13.
Sensors (Basel) ; 11(3): 3135-44, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22163790

RESUMEN

Capacitive sensors are the most commonly used devices for the detection of humidity because they are inexpensive and the detection mechanism is very specific for humidity. However, especially for industrial processes, there is a lack of dielectrics that are stable at high temperature (>200 °C) and under harsh conditions. We present a capacitive sensor based on mesoporous silica as the dielectric in a simple sensor design based on pressed silica pellets. Investigation of the structural stability of the porous silica under simulated operating conditions as well as the influence of the pellet production will be shown. Impedance measurements demonstrate the utility of the sensor at both low (90 °C) and high (up to 210 °C) operating temperatures.


Asunto(s)
Capacidad Eléctrica , Electrónica/instrumentación , Humedad , Dióxido de Silicio/química , Temperatura , Oro/química , Microscopía Electrónica de Transmisión , Nitrógeno/química , Porosidad , Difracción de Rayos X
14.
Dalton Trans ; 50(38): 13572-13579, 2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34515279

RESUMEN

The tetratopic linker 1,1,2,2-tetrakis(4-phosphonophenyl)ethylene (H8TPPE) was used to synthesize the three new porous metal-organic frameworks of composition [M2(H2O)2(H2TPPE)]·xH2O (M = Al3+, Ga3+, Fe3+), denoted as M-CAU-53 under hydrothermal reaction conditions, using the corresponding metal nitrates as starting materials. The crystal structures of the compounds were determined ab initio from powder X-ray diffraction data, revealing small structural differences. Proton conductivity measurements were carried out, indicating different conductivity mechanisms. The differences in proton conductivity could be linked to the individual structures. In addition, a thorough characterization via thermogravimetry, elemental analysis, IR-spectroscopy as well as N2- and H2O-sorption is given.

15.
J Biomed Mater Res B Appl Biomater ; 109(12): 2142-2153, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33982864

RESUMEN

Photodynamic therapy (PDT) using TiO2 nanoparticles has become an important alternative treatment for different types of cancer due to their high photocatalytic activity and high absorption of UV-A light. To potentiate this treatment, we have coated commercial glass plates with TiO2 nanoparticles prepared by the sol-gel method (TiO2 -m), which exhibit a remarkable selectivity for the irreversible trapping of cancer cells. The physicochemical properties of the deposited TiO2 -m nanoparticle coatings have been characterized by a number of complementary surface-analytical techniques and their interaction with leukemia and healthy blood cells were investigated. Scanning electron and atomic force microscopy verify the formation of a compact layer of TiO2 -m nanoparticles. The particles are predominantly in the anatase phase and have hydroxyl-terminated surfaces as revealed by Raman, X-ray photoelectron, and infrared spectroscopy, as well as X-ray diffraction. We find that lymphoblastic leukemia cells adhere to the TiO2 -m coating and undergo amoeboid-like migration, whereas lymphocytic cells show distinctly weaker interactions with the coating. This evidences the potential of this nanomaterial coating to selectively trap cancer cells and renders it a promising candidate for the development of future prototypes of PDT devices for the treatment of leukemia and other types of cancers with non-adherent cells.


Asunto(s)
Leucemia , Nanopartículas , Vidrio , Humanos , Leucemia/tratamiento farmacológico , Nanopartículas/química , Titanio/química , Titanio/farmacología
16.
J Am Chem Soc ; 132(19): 6822-6, 2010 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-20426411

RESUMEN

Precipitation of zinc sulfide particles is a very rapid process, and monitoring of the particle growth is experimentally very demanding. Applying a liquid jet flow cell, we were able to follow zinc sulfide particle formation on time scales down to 10(-5) s. The flow cell was designed in such a way that data acquisition on the microsecond time scale was possible under steady-state conditions along a liquid jet (tubular reactor concept), allowing SAXS data accumulation over a time scale of minutes. We were able to monitor the growth of zinc sulfide particles and found experimental evidence for very rapid particle aggregation processes within the liquid jet. Under the experimental conditions the particle growth is controlled by mass transfer: i.e., the diffusion of the hydrogen sulfide into the liquid jet.


Asunto(s)
Precipitación Química , Dispersión del Ángulo Pequeño , Sulfuros/química , Difracción de Rayos X , Compuestos de Zinc/química , Gases/química , Cinética
17.
Chemistry ; 16(34): 10447-52, 2010 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-20648490

RESUMEN

We report the synthesis of monodisperse, spherical periodic mesoporous organosilica (PMO) materials. The particles have diameters between about 350 and 550 nm. They exhibit a regular core-shell structure with a solid, non-porous silica core and a mesoporous PMO shell with a thickness of approximately 75 nm and uniform pores of about 1.7 nm. The synthesis of the core and the shell is carried out in a one-pot, two-stage synthesis and can be accomplished at temperatures between 25 and 100 °C. Higher synthesis temperatures lead to substantial shrinking of the solid core, generating an empty void between core and shell. This leads to interesting cavitation phenomena in the nitrogen physisorption analysis at 77.4 K.

18.
Nanomaterials (Basel) ; 10(4)2020 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-32272599

RESUMEN

This Special Issue on "Functional Nanoporous Materials" in the MDPI journal nanomaterials features seven original papers [...].

19.
Nanomaterials (Basel) ; 10(7)2020 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-32605317

RESUMEN

Large Co-MOF-74 crystals of a few hundred micrometers were prepared by solvothermal synthesis, and their structure and morphology were characterized by scanning electron microscopy (SEM), IR, and Raman spectroscopy. The hydrothermal stability of the material up to 60 °C at 93% relative humidity was verified by temperature-dependent XRD. Proton conductivity was studied by impedance spectroscopy, using a single crystal. By varying the relative humidity (70-95%), temperature (21-60 °C), and orientation of the crystal relative to the electrical potential, it was found that proton conduction occurs predominantly through the linear, unidirectional (1D) micropore channels of Co-MOF-74, and that water molecules inside the channels are responsible for the proton mobility by a Grotthuss-type mechanism.

20.
Nanomaterials (Basel) ; 10(6)2020 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-32575861

RESUMEN

Thermally stabilized and subsequently carbonized nanofibers are a promising material for many technical applications in fields such as tissue engineering or energy storage. They can be obtained from a variety of different polymer precursors via electrospinning. While some methods have been tested for post-carbonization doping of nanofibers with the desired ingredients, very little is known about carbonization of blend nanofibers from two or more polymeric precursors. In this paper, we report on the preparation, thermal treatment and resulting properties of poly(acrylonitrile) (PAN)/poly(vinylidene fluoride) (PVDF) blend nanofibers produced by wire-based electrospinning of binary polymer solutions. Using a wide variety of spectroscopic, microscopic and thermal characterization methods, the chemical and morphological transition during oxidative stabilization (280 °C) and incipient carbonization (500 °C) was thoroughly investigated. Both PAN and PVDF precursor polymers were detected and analyzed qualitatively and quantitatively during all stages of thermal treatment. Compared to pure PAN nanofibers, the blend nanofibers showed increased fiber diameters, strong reduction of undesired morphological changes during oxidative stabilization and increased conductivity after carbonization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA