Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Cancer ; 151(12): 2068-2081, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-35730647

RESUMEN

Colorectal cancer (CRC) is the second leading cause of cancer death worldwide that is attributed to gradual long-term accumulation of both genetic and epigenetic changes. To reduce the mortality rate of CRC and to improve treatment efficacy, it will be important to develop accurate noninvasive diagnostic tests for screening, acute and personalized diagnosis. Epigenetic changes such as DNA methylation play an important role in the development and progression of CRC. Over the last decade, a panel of DNA methylation markers has been reported showing a high accuracy and reproducibility in various semi-invasive or noninvasive biosamples. Research to obtain comprehensive panels of markers allowing a highly sensitive and differentiating diagnosis of CRC is ongoing. Moreover, the epigenetic alterations for cancer therapy, as a precision medicine strategy will increase their therapeutic potential over time. Here, we discuss the current state of DNA methylation-based biomarkers and their impact on CRC diagnosis. We emphasize the need to further identify and stratify methylation-biomarkers and to develop robust and effective detection methods that are applicable for a routine clinical setting of CRC diagnostics particularly at the early stage of the disease.


Asunto(s)
Neoplasias Colorrectales , Metilación de ADN , Humanos , Medicina de Precisión , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/tratamiento farmacológico , Reproducibilidad de los Resultados , Biomarcadores de Tumor/genética , Epigénesis Genética
2.
Genes Dev ; 26(16): 1837-50, 2012 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-22855791

RESUMEN

Genomic imprinting is exclusive to mammals and seed plants and refers to parent-of-origin-dependent, differential transcription. As previously shown in mammals, studies in Arabidopsis have implicated DNA methylation as an important hallmark of imprinting. The current model suggests that maternally expressed imprinted genes, such as MEDEA (MEA), are activated by the DNA glycosylase DEMETER (DME), which removes DNA methylation established by the DNA methyltransferase MET1. We report the systematic functional dissection of the MEA cis-regulatory region, resulting in the identification of a 200-bp fragment that is necessary and sufficient to mediate MEA activation and imprinted expression, thus containing the imprinting control region (ICR). Notably, imprinted MEA expression mediated by this ICR is independent of DME and MET1, consistent with the lack of any significant DNA methylation in this region. This is the first example of an ICR without differential DNA methylation, suggesting that factors other than DME and MET1 are required for imprinting at the MEA locus.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis , Metilación de ADN , Impresión Genómica , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen/fisiología , Regiones Promotoras Genéticas/genética , Semillas/genética , Transgenes/genética
3.
Int J Cancer ; 144(3): 569-581, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30252132

RESUMEN

Expression of the epidermal growth factor ligands amphiregulin (AREG) and epiregulin (EREG) is positively correlated with a response to EGFR-targeted therapies in colorectal cancer. Gene-body methylation sites, which show a strong inverse correlation with AREG and EREG gene expression, were identified in cell lines using targeted 454 FLX-bisulfite sequencing and SIRPH analyses for AREG/EREG promoters and intragenic CpGs. Upon treatment of colorectal cancer cells with 5-aza-2'-desoxycytidine, methylation decreases at specific intragenic CpGs accompanied by upregulation of AREG and EREG gene expression. The same AREG gene-body methylation was also found in human colorectal cancer samples and is independent of KRAS and NRAS mutations. Methylation is specifically decreased in the tumor epithelial compartment as compared to stromal tissue and normal epithelium. Investigation of a promoter/enhancer function of the AREG exon 2 region revealed a potential promoter function in reverse orientation. Retrospective comparison of the predictive power of AREG gene-body methylation versus AREG gene expression using samples from colorectal cancer patients treated with anti-EGFR inhibitors with complete clinical follow-up revealed that AREG expression is superior to AREG gene methylation. AREG and EREG genes undergo a complex regulation involving both intragenic methylation and promoter-dependent control.


Asunto(s)
Anfirregulina/genética , Neoplasias Colorrectales/genética , Epirregulina/genética , Anfirregulina/biosíntesis , Células CACO-2 , Línea Celular Tumoral , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Metilación de ADN , Epigénesis Genética , Células Epiteliales/metabolismo , Células Epiteliales/patología , Receptores ErbB/genética , Receptores ErbB/metabolismo , Expresión Génica , Células HCT116 , Humanos , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Estudios Retrospectivos , Células del Estroma/metabolismo , Células del Estroma/patología
4.
Respir Res ; 20(1): 46, 2019 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-30819175

RESUMEN

BACKGROUND: Sarcoidosis is a systemic disease of unknown etiology. The disease mechanisms are largely speculative and may include the role microbial patterns that initiate and drive an underlying immune process. The aim of this study was to characterize the microbiota of the lung of patients with sarcoidosis and compare its composition and diversity with the results from patients with other interstitial lung disease (ILD) and historic healthy controls. METHODS: Patients (sarcoidosis, n = 31; interstitial lung disease, n = 19) were recruited within the PULMOHOM study, a prospective cohort study to characterize inflammatory processes in pulmonary diseases. Bronchoscopy of the middle lobe or the lingula was performed and the recovered fluid was immediately sent for analysis of the pulmonary microbiota by 16sRNA gene sequencing. Subsequent bioinformatic analysis was performed to compare the groups. RESULTS: There were no significant differences between patients with sarcoidosis or other ILDs with regard to microbiome composition and diversity. In addition, the abundance of the genera Atopobium, Fusobacterium, Mycobacterium or Propionibacterium were not different between the two groups. There were no gross differences to historical healthy controls. CONCLUSION: The analysis of the pulmonary microbiota based on 16sRNA gene sequencing did not show a significant dysbiosis in patients with sarcoidosis as compared to other ILD patients. These data do not exclude a microbiological component in the pathogenesis of sarcoidosis.


Asunto(s)
Líquido del Lavado Bronquioalveolar/microbiología , Enfermedades Pulmonares Intersticiales/diagnóstico , Enfermedades Pulmonares Intersticiales/microbiología , Microbiota/fisiología , Sarcoidosis Pulmonar/diagnóstico , Sarcoidosis Pulmonar/microbiología , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Adulto Joven
5.
J Immunol ; 197(8): 3406-3414, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27591321

RESUMEN

E- and P-selectin ligands (E- and P-ligs) guide effector memory T cells into skin and inflamed regions, mediate the inflammatory recruitment of leukocytes, and contribute to the localization of hematopoietic precursor cells. A better understanding of their molecular regulation is therefore of significant interest with regard to therapeutic approaches targeting these pathways. In this study, we examined the transcriptional regulation of fucosyltransferase 7 (FUT7), an enzyme crucial for generation of the glycosylated E- and P-ligs. We found that high expression of the coding gene fut7 in murine CD4+ T cells correlates with DNA demethylation within a minimal promoter in skin/inflammation-seeking effector memory T cells. Retinoic acid, a known inducer of the gut-homing phenotype, abrogated the activation-induced demethylation of this region, which contains a cAMP responsive element. Methylation of the promoter or mutation of the cAMP responsive element abolished promoter activity and the binding of CREB, confirming the importance of this region and of its demethylation for fut7 transcription in T cells. Furthermore, studies on human CD4+ effector memory T cells confirmed demethylation within FUT7 corresponding to high FUT7 expression. Monocytes showed an even more extensive demethylation of the FUT7 gene whereas hepatocytes, which lack selectin ligand expression, exhibited extensive methylation. In conclusion, we show that DNA demethylation within the fut7 gene controls selectin ligand expression in mice and humans, including the inducible topographic commitment of T cells for skin and inflamed sites.


Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , Metilación de ADN , Fucosiltransferasas/metabolismo , Inflamación/metabolismo , Piel/metabolismo , Animales , Células Cultivadas , Metilación de ADN/genética , Fucosiltransferasas/genética , Humanos , Ratones , Ratones Endogámicos BALB C , ARN Mensajero/genética , ARN Mensajero/metabolismo
6.
Blood ; 123(15): 2367-77, 2014 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-24553175

RESUMEN

NR4A1 (Nur77) and NR4A3 (Nor-1) function as tumor suppressor genes as demonstrated by the rapid development of acute myeloid leukemia in the NR4A1 and NR4A3 knockout mouse. The aim of our study was to investigate NR4A1 and NR4A3 expression and function in lymphoid malignancies. We found a vastly reduced expression of NR4A1 and NR4A3 in chronic lymphocytic B-cell leukemia (71%), in follicular lymphoma (FL, 70%), and in diffuse large B-cell lymphoma (DLBCL, 74%). In aggressive lymphomas (DLBCL and FL grade 3), low NR4A1 expression was significantly associated with a non-germinal center B-cell subtype and with poor overall survival. To investigate the function of NR4A1 in lymphomas, we overexpressed NR4A1 in several lymphoma cell lines. Overexpression of NR4A1 led to a higher proportion of lymphoma cells undergoing apoptosis. To test the tumor suppressor function of NR4A1 in vivo, the stable lentiviral-transduced SuDHL4 lymphoma cell line harboring an inducible NR4A1 construct was further investigated in xenografts. Induction of NR4A1 abrogated tumor growth in the NSG mice, in contrast to vector controls, which formed massive tumors. Our data suggest that NR4A1 has proapoptotic functions in aggressive lymphoma cells and define NR4A1 as a novel gene with tumor suppressor properties involved in lymphomagenesis.


Asunto(s)
Apoptosis/genética , Linfoma de Células B/genética , Linfoma de Células B/mortalidad , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Animales , Western Blotting , Línea Celular Tumoral , Proteínas de Unión al ADN/genética , Xenoinjertos , Humanos , Inmunohistoquímica , Estimación de Kaplan-Meier , Ratones , Ratones Endogámicos NOD , Ratones SCID , Modelos de Riesgos Proporcionales , Receptores de Esteroides/genética , Receptores de Hormona Tiroidea/genética
8.
PLoS Genet ; 9(2): e1003250, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23408899

RESUMEN

Aberrant CpG methylation is a universal epigenetic trait of cancer cell genomes. However, human cancer samples or cell lines preclude the investigation of epigenetic changes occurring early during tumour development. Here, we have used MeDIP-seq to analyse the DNA methylome of APC(Min) adenoma as a model for intestinal cancer initiation, and we present a list of more than 13,000 recurring differentially methylated regions (DMRs) characterizing intestinal adenoma of the mouse. We show that Polycomb Repressive Complex (PRC) targets are strongly enriched among hypermethylated DMRs, and several PRC2 components and DNA methyltransferases were up-regulated in adenoma. We further demonstrate by bisulfite pyrosequencing of purified cell populations that the DMR signature arises de novo in adenoma cells rather than by expansion of a pre-existing pattern in intestinal stem cells or undifferentiated crypt cells. We found that epigenetic silencing of tumour suppressors, which occurs frequently in colon cancer, was rare in adenoma. Quite strikingly, we identified a core set of DMRs, which is conserved between mouse adenoma and human colon cancer, thus possibly revealing a global panel of epigenetically modified genes for intestinal tumours. Our data allow a distinction between early conserved epigenetic alterations occurring in intestinal adenoma and late stochastic events promoting colon cancer progression, and may facilitate the selection of more specific clinical epigenetic biomarkers.


Asunto(s)
Adenoma/genética , Neoplasias del Colon/genética , Metilación de ADN/genética , Neoplasias Intestinales/genética , Proteínas del Grupo Polycomb/genética , Adenoma/patología , Animales , Secuencia de Bases , Islas de CpG/genética , Epigenómica , Genoma , Humanos , Neoplasias Intestinales/patología , Ratones , Sintenía
9.
Hum Genet ; 132(7): 825-41, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23552953

RESUMEN

When a known microimbalance affecting multiple genes is detected in a patient with syndromic intellectual disability, it is usually presumed causative for all observed features. Whole exome sequencing (WES) allows questioning this assumption. In this study of three families with children affected by unexplained syndromic intellectual disability, genome-wide copy number and subsequent analyses revealed a de novo maternal 1.1 Mb microdeletion in the 14q32 imprinted region causing a paternal UPD(14)-like phenotype, and two inherited 22q11.21 microduplications of 2.5 or 2.8 Mb. In patient 1 carrying the 14q32 microdeletion, tall stature and renal malformation were unexplained by paternal UPD(14), and there was no altered DLK1 expression or unexpected methylation status. By WES and filtering with a mining tool, a novel FBN1 missense variant was found in patient 1 and his mother, who both showed clinical features of Marfan syndrome by thorough anthropometric assessment, and a novel EYA1 missense variant as a probable cause of the renal malformation in the patient. In patient 2 with the 22q11.21 microduplication syndrome, skin hypo- and hyperpigmentation and two malignancies were only partially explained. By WES, compound heterozygous BLM stop founder mutations were detected causing Bloom syndrome. In male patient 3 carrying a 22q11.21 microduplication inherited from his unaffected father, WES identified a novel missense variant in the OPHN1 X-linked intellectual disability gene inherited from the unaffected mother as a possible additional cause for developmental delay. Thus, WES seems warranted in patients carrying microdeletions or microduplications, who have unexplained clinical features or microimbalances inherited from an unaffected parent.


Asunto(s)
Cromosomas Humanos Par 14/genética , Cromosomas Humanos Par 22/genética , Trastornos del Conocimiento/genética , Exoma , Enfermedades Genéticas Congénitas/genética , Estudio de Asociación del Genoma Completo , Genotipo , Deleción Cromosómica , Proteínas del Citoesqueleto/genética , Femenino , Proteínas Activadoras de GTPasa/genética , Dosificación de Gen , Humanos , Masculino , Mutación Missense , Proteínas Nucleares/genética
10.
Front Oncol ; 13: 1168942, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37284192

RESUMEN

Background: The receptors, ligands, and associated proteins of the insulin-like growth factor (IGF) family are involved in cancer development. The IGF1 receptor and its accompanying signaling cascade are a crucial growth-regulatory mechanism that plays an important role in colorectal cancer (CRC) proliferation and differentiation. IRS1 (Insulin receptor substrate-1), a major substrate for the IGF1R, is involved in cell growth and promotes tumorigenesis. There are shreds of evidence from prior research suggesting that IGF system polymorphisms may influence susceptibility to CRC. However, the findings in this area were contradictory. Accordingly, we carried out a systematic literature search to identify all case-control, cross-sectional, and cohort studies on the association between various polymorphisms across four IGF1 pathway genes (IGF1, IGF1R, IRS1, and IRS2) and the risk of CRC. Methods: We performed a comprehensive search strategy in PubMed, Scopus, and Web of Science databases for articles available until Aug 30, 2022. A total of 26 eligible studies with IGF1/IGF1R, IRS1 and IRS2 polymorphisms; met the inclusion criteria. All case-control studies for IGF1 rs6214C>T, IRS1 rs1801278G>A, and IRS2 rs1805097G>A comprising 22,084 cases and 29,212 controls were included in the current meta-analysis. The pooled odds ratios (ORs) with 95% confidence intervals (CIs) were used to evaluate relationships between the polymorphisms and CRC susceptibility. All statistical analyses were performed using STATA software version 14.0. Results: The meta-analysis of available data for rs6214C>T, rs1801278G>A, and rs1805097G>A showed a significant association between these polymorphisms and an increased CRC risk in some of the comparisons studied (rs6214C>T, pooled OR for CC = 0.43, 95% CI 0.21- 0.87, P = 0.019; rs1801278G>A, OR for GA = 0.74, 95% CI 0.58-0.94, P = 0.016; rs1805097G>A, OR for GA = 0.83, 95% CI 0.71-0.96, P = 0.013). Nevertheless, the meta-analysis did not include other genetic variations in IGF1, IGF1R, IRS1, and IRS2 due to heterogeneity and limited sample size. Conclusions: This systematic review and meta-analysis provide evidence that genetic variants in IGF1 rs6214C>T, IRS1 rs1801278G>A, and IRS2 rs1805097G>A are associated with an increased risk of CRC. These findings may contribute to a better understanding of the complex genetic mechanisms involved in CRC development and could inform future research on prevention and treatment strategies for this disease.

11.
Epigenetics Chromatin ; 16(1): 30, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37415213

RESUMEN

Fatty liver disease or the accumulation of fat in the liver, has been reported to affect the global population. This comes with an increased risk for the development of fibrosis, cirrhosis, and hepatocellular carcinoma. Yet, little is known about the effects of a diet containing high fat and alcohol towards epigenetic aging, with respect to changes in transcriptional and epigenomic profiles. In this study, we took up a multi-omics approach and integrated gene expression, methylation signals, and chromatin signals to study the epigenomic effects of a high-fat and alcohol-containing diet on mouse hepatocytes. We identified four relevant gene network clusters that were associated with relevant pathways that promote steatosis. Using a machine learning approach, we predict specific transcription factors that might be responsible to modulate the functionally relevant clusters. Finally, we discover four additional CpG loci and validate aging-related differential CpG methylation. Differential CpG methylation linked to aging showed minimal overlap with altered methylation in steatosis.


Asunto(s)
Epigenómica , Hepatocitos , Ratones , Animales , Hepatocitos/metabolismo , Hígado/metabolismo , Etanol , Epigénesis Genética , Metilación de ADN
12.
Int J Cancer ; 130(3): 567-74, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-21387306

RESUMEN

Mutations in the KRAS gene are very important diagnostic and prognostic markers in cancer. Particularly, KRAS mutations at codons 12 and 13 have a high prognostic value for EGFR-directed antibody therapies. Several methods are available to detect the most common mutations, some of them are commercialized. The most frequently used techniques, allele-specific PCR or direct sequencing, are not standardized and often lack sensitivity to detect low amounts of mutated tumor cells in paraffin-embedded tissue-blocks leading to a high number of false-negatives. Here we present a reliable, fast, cost-effective and sensitive approach for KRAS mutation detection that has a high potential for standardized large scale screening. The method is based on multiplexed primer extension reactions coupled to HPLC separation. The highly sensitive assay gives easily interpretable and reproducible results at affordable costs. We describe the method and an application example for diagnosis in early colorectal cancer screening.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/genética , Análisis Mutacional de ADN/métodos , Mutación , Proteínas Proto-Oncogénicas/genética , Proteínas ras/genética , Detección Precoz del Cáncer , Humanos , Reacción en Cadena de la Polimerasa , Proteínas Proto-Oncogénicas p21(ras) , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
13.
PLoS Genet ; 5(3): e1000438, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19325872

RESUMEN

Differential DNA methylation is an essential epigenetic signal for gene regulation, development, and disease processes. We mapped DNA methylation patterns of 190 gene promoter regions on chromosome 21 using bisulfite conversion and subclone sequencing in five human cell types. A total of 28,626 subclones were sequenced at high accuracy using (long-read) Sanger sequencing resulting in the measurement of the DNA methylation state of 580427 CpG sites. Our results show that average DNA methylation levels are distributed bimodally with enrichment of highly methylated and unmethylated sequences, both for amplicons and individual subclones, which represent single alleles from individual cells. Within CpG-rich sequences, DNA methylation was found to be anti-correlated with CpG dinucleotide density and GC content, and methylated CpGs are more likely to be flanked by AT-rich sequences. We observed over-representation of CpG sites in distances of 9, 18, and 27 bps in highly methylated amplicons. However, DNA sequence alone is not sufficient to predict an amplicon's DNA methylation status, since 43% of all amplicons are differentially methylated between the cell types studied here. DNA methylation in promoter regions is strongly correlated with the absence of gene expression and low levels of activating epigenetic marks like H3K4 methylation and H3K9 and K14 acetylation. Utilizing the single base pair and single allele resolution of our data, we found that i) amplicons from different parts of a CpG island frequently differ in their DNA methylation level, ii) methylation levels of individual cells in one tissue are very similar, and iii) methylation patterns follow a relaxed site-specific distribution. Furthermore, iv) we identified three cases of allele-specific DNA methylation on chromosome 21. Our data shed new light on the nature of methylation patterns in human cells, the sequence dependence of DNA methylation, and its function as epigenetic signal in gene regulation. Further, we illustrate genotype-epigenotype interactions by showing novel examples of allele-specific methylation.


Asunto(s)
Alelos , Emparejamiento Base , Cromosomas Humanos Par 21/genética , Metilación de ADN , Epigénesis Genética , Regiones Promotoras Genéticas/genética , Secuencia de Bases , Islas de CpG , Genotipo , Humanos
14.
Biomicrofluidics ; 16(6): 064102, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36506005

RESUMEN

Changes in the DNA methylation landscape are associated with many diseases like cancer. Therefore, DNA methylation analysis is of great interest for molecular diagnostics and can be applied, e.g., for minimally invasive diagnostics in liquid biopsy samples like blood plasma. Sensitive detection of local de novo methylation, which occurs in various cancer types, can be achieved with quantitative HeavyMethyl-PCR using oligonucleotides that block the amplification of unmethylated DNA. A transfer of these quantitative PCRs (qPCRs) into point-of-care (PoC) devices like microfluidic Lab-on-Chip (LoC) cartridges can be challenging as LoC systems show significantly different thermal properties than qPCR cyclers. We demonstrate how an adequate thermal model of the specific LoC system can help us to identify a suitable thermal profile, even for complex HeavyMethyl qPCRs, with reduced experimental effort. Using a simulation-based approach, we demonstrate a proof-of-principle for the successful LoC transfer of colorectal SEPT9/ACTB-qPCR from Epi Procolon® colorectal carcinoma test, by avoidance of oligonucleotide interactions.

15.
Clin Epigenetics ; 14(1): 26, 2022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-35180887

RESUMEN

BACKGROUND: Promoter methylation of the DNA repair gene O6-methylguanine-DNA methyltransferase (MGMT) is an acknowledged predictive epigenetic marker in glioblastoma multiforme and anaplastic astrocytoma. Patients with methylated CpGs in the MGMT promoter benefit from treatment with alkylating agents, such as temozolomide, and show an improved overall survival and progression-free interval. A precise determination of MGMT promoter methylation is of importance for diagnostic decisions. We experienced that different methods show partially divergent results in a daily routine. For an integrated neuropathological diagnosis of malignant gliomas, we therefore currently apply a combination of methylation-specific PCR assays and pyrosequencing. RESULTS: To better rationalize the variation across assays, we compared these standard techniques and assays to deep bisulfite sequencing results in a cohort of 80 malignant astrocytomas. Our deep analysis covers 49 CpG sites of the expanded MGMT promoter, including exon 1, parts of intron 1 and a region upstream of the transcription start site (TSS). We observed that deep sequencing data are in general in agreement with CpG-specific pyrosequencing, while the most widely used MSP assays published by Esteller et al. (N Engl J Med 343(19):1350-1354, 2000. https://doi.org/10.1056/NEJM200011093431901 ) and Felsberg et al. (Clin Cancer Res 15(21):6683-6693, 2009. https://doi.org/10.1158/1078-0432.CCR-08-2801 ) resulted in partially discordant results in 22 tumors (27.5%). Local deep bisulfite sequencing (LDBS) revealed that CpGs located in exon 1 are suited best to discriminate methylated from unmethylated samples. Based on LDBS data, we propose an optimized MSP primer pair with 83% and 85% concordance to pyrosequencing and LDBS data. A hitherto neglected region upstream of the TSS, with an overall higher methylation compared to exon 1 and intron 1 of MGMT, is also able to discriminate the methylation status. CONCLUSION: Our integrated analysis allows to evaluate and redefine co-methylation domains within the MGMT promoter and to rationalize the practical impact on assays used in daily routine diagnostics.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Metilación de ADN , Metilasas de Modificación del ADN/genética , Enzimas Reparadoras del ADN/genética , Glioblastoma/diagnóstico , Glioblastoma/genética , Glioblastoma/patología , Humanos , O(6)-Metilguanina-ADN Metiltransferasa/genética , Sulfitos , Proteínas Supresoras de Tumor/genética
16.
Epigenetics ; 17(9): 935-952, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-34529553

RESUMEN

Prenatal exposure to endocrine disrupting chemicals can interfere with development, and has been associated with social-cognitive functioning and adverse health outcomes later in life. Exposure-associated changes of DNA methylation (DNAm) patterns have been suggested as a possible mediator of this relationship. This study investigated whether prenatal low-dose exposure to polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) is associated with altered DNAm patterns across the genome in a Western urban-industrial population. In 142 mother-infant pairs from the Duisburg Birth Cohort Study, PCBs and PCDD/Fs levels were quantified from maternal blood during late pregnancy and associated with DNAm levels in cord blood using the Illumina EPIC beadchip. The epigenome-wide association studies (EWAS) identified 32 significantly differentially methylated positions (DMPs) and eight differentially methylated regions (DMRs) associated with six congeners of PCB and PCDD in females or males (FDRs < 0.05). DMPs and DMRs mapped to genes involved in neurodevelopment, gene regulation, and immune functioning. Weighted gene correlation network analysis (WGCNA) showed 31 co-methylated modules (FDRs < 0.05) associated with one congener of PCDF levels in females. Results of both analytical strategies indicate that prenatal exposure to PCBs and PCDD/Fs is associated with altered DNAm of genes involved in neurodevelopment, gene expression and immune functioning. DNAm and gene expression levels of several of these genes were previously associated with EDC exposure in rodent models. Follow-up studies will clarify whether these epigenetic changes might contribute to the origin for adverse mental and health outcomes.


Asunto(s)
Dioxinas , Disruptores Endocrinos , Contaminantes Ambientales , Bifenilos Policlorados , Dibenzodioxinas Policloradas , Efectos Tardíos de la Exposición Prenatal , Estudios de Cohortes , Metilación de ADN , Dibenzofuranos/metabolismo , Dioxinas/metabolismo , Disruptores Endocrinos/toxicidad , Femenino , Sangre Fetal/metabolismo , Humanos , Masculino , Bifenilos Policlorados/toxicidad , Dibenzodioxinas Policloradas/metabolismo , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente
17.
Genomics Proteomics Bioinformatics ; 20(2): 274-287, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34839011

RESUMEN

The composition of the gut microbiota is linked to multiple diseases, including Parkinson's disease (PD). Abundance of bacteria producing short-chain fatty acids (SCFAs) and fecal SCFA concentrations are reduced in PD. SCFAs exert various beneficial functions in humans. In the interventional, monocentric, open-label clinical trial "Effects of Resistant Starch on Bowel Habits, Short Chain Fatty Acids and Gut Microbiota in Parkinson'sDisease" (RESISTA-PD; ID: NCT02784145), we aimed at altering fecal SCFAs by an 8-week prebiotic intervention with resistant starch (RS). We enrolled 87 subjects in three study-arms: 32 PD patients received RS (PD + RS), 30 control subjects received RS, and 25 PD patients received solely dietary instructions. We performed paired-end 100 bp length metagenomic sequencing of fecal samples using the BGISEQ platform at an average of 9.9 GB. RS was well-tolerated. In the PD + RS group, fecal butyrate concentrations increased significantly, and fecal calprotectin concentrations dropped significantly after 8 weeks of RS intervention. Clinically, we observed a reduction in non-motor symptom load in the PD + RS group. The reference-based analysis of metagenomes highlighted stable alpha-diversity and beta-diversity across the three groups, including bacteria producing SCFAs. Reference-free analysis suggested punctual, yet pronounced differences in the metagenomic signature in the PD + RS group. RESISTA-PD highlights that a prebiotic treatment with RS is safe and well-tolerated in PD. The stable alpha-diversity and beta-diversity alongside altered fecal butyrate and calprotectin concentrations call for long-term studies, also investigating whether RS is able to modify the clinical course of PD.


Asunto(s)
Microbioma Gastrointestinal , Enfermedad de Parkinson , Humanos , Bacterias/genética , Biomarcadores , Butiratos/farmacología , Ácidos Grasos Volátiles/farmacología , Heces/microbiología , Complejo de Antígeno L1 de Leucocito/farmacología , Enfermedad de Parkinson/tratamiento farmacológico , Prebióticos , Almidón Resistente
18.
Nat Commun ; 13(1): 7304, 2022 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-36435874

RESUMEN

Melanoma brain metastases (MBM) variably respond to therapeutic interventions; thus determining patient's prognosis. However, the mechanisms that govern therapy response are poorly understood. Here, we use a multi-OMICS approach and targeted sequencing (TargetSeq) to unravel the programs that potentially control the development of progressive intracranial disease. Molecularly, the expression of E-cadherin (Ecad) or NGFR, the BRAF mutation state and level of immune cell infiltration subdivides tumors into proliferative/pigmented and invasive/stem-like/therapy-resistant irrespective of the intracranial location. The analysis of MAPK inhibitor-naive and refractory MBM reveals switching from Ecad-associated into NGFR-associated programs during progression. NGFR-associated programs control cell migration and proliferation via downstream transcription factors such as SOX4. Moreover, global methylome profiling uncovers 46 differentially methylated regions that discriminate BRAFmut and wildtype MBM. In summary, we propose that the expression of Ecad and NGFR sub- classifies MBM and suggest that the Ecad-to-NGFR phenotype switch is a rate-limiting process which potentially indicates drug-response and intracranial progression states in melanoma patients.


Asunto(s)
Neoplasias Encefálicas , Melanoma , Humanos , Proteínas Proto-Oncogénicas B-raf/genética , Melanoma/patología , Neoplasias Encefálicas/patología , Mutación , Factores de Transcripción SOXC/genética
19.
J Exp Med ; 202(1): 33-45, 2005 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-15983066

RESUMEN

The role of central tolerance induction has recently been revised after the discovery of promiscuous expression of tissue-restricted self-antigens in the thymus. The extent of tissue representation afforded by this mechanism and its cellular and molecular regulation are barely defined. Here we show that medullary thymic epithelial cells (mTECs) are specialized to express a highly diverse set of genes representing essentially all tissues of the body. Most, but not all, of these genes are induced in functionally mature CD80(hi) mTECs. Although the autoimmune regulator (Aire) is responsible for inducing a large portion of this gene pool, numerous tissue-restricted genes are also up-regulated in mature mTECs in the absence of Aire. Promiscuously expressed genes tend to colocalize in clusters in the genome. Analysis of a particular gene locus revealed expression of clustered genes to be contiguous within such a cluster and to encompass both Aire-dependent and -independent genes. A role for epigenetic regulation is furthermore implied by the selective loss of imprinting of the insulin-like growth factor 2 gene in mTECs. Our data document a remarkable cellular and molecular specialization of the thymic stroma in order to mimic the transcriptome of multiple peripheral tissues and, thus, maximize the scope of central self-tolerance.


Asunto(s)
Timo/inmunología , Animales , Autoantígenos , Antígeno B7-1/metabolismo , Secuencia de Bases , Diferenciación Celular , ADN Complementario/genética , Células Epiteliales/inmunología , Femenino , Regulación de la Expresión Génica , Impresión Genómica , Factor I del Crecimiento Similar a la Insulina/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Familia de Multigenes , Muridae , Embarazo , Autotolerancia , Timo/citología , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Proteína AIRE
20.
J Hepatol ; 54(5): 994-1001, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21145819

RESUMEN

BACKGROUND & AIMS: The insulin-like growth-factor 2 (IGF2) mRNA binding protein p62 is highly expressed in hepatocellular carcinoma tissue. Still, its potential role in liver disease is largely unknown. In this study, we investigated pathophysiological implications of p62 overexpression in mice. METHODS: We generated mice overexpressing p62 under a LAP-promotor. mRNA expression levels and stability were examined by real-time RT-PCR. Allele-specific expression of Igf2 and H19 was assessed after crossing mice with SD7 animals. The Igf2 downstream mediators pAKT and PTEN were determined by Western blot. RESULTS: Hepatic p62 overexpression neither induced inflammatory processes nor liver damage. However, 2.5week old transgenic animals displayed a steatotic phenotype and improved glucose tolerance. p62 overexpression induced the expression of the imprinted genes Igf2 and H19 and their transcriptional regulator Aire (autoimmune regulator). Neither monoallelic expression nor mRNA stability of Igf2 and H19 was affected. Investigating Igf2 downstream signalling pathways showed increased AKT activation and attenuated PTEN expression. CONCLUSIONS: The induction of a steatotic phenotype implies that p62 plays a role in hepatic pathophysiology.


Asunto(s)
Factor II del Crecimiento Similar a la Insulina/genética , Hígado/patología , Factores de Transcripción/genética , Animales , Hígado Graso/genética , Hígado Graso/metabolismo , Hígado Graso/patología , Expresión Génica/fisiología , Intolerancia a la Glucosa/genética , Intolerancia a la Glucosa/metabolismo , Intolerancia a la Glucosa/patología , Humanos , Hígado/fisiología , Ratones , Ratones Transgénicos , Enfermedad del Hígado Graso no Alcohólico , Fenotipo , Regiones Promotoras Genéticas/fisiología , ARN Mensajero/metabolismo , Factor de Transcripción TFIIH , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA