RESUMEN
Despite tremendous efforts in the past decades, relationships among main avian lineages remain heavily debated without a clear resolution. Discrepancies have been attributed to diversity of species sampled, phylogenetic method and the choice of genomic regions1-3. Here we address these issues by analysing the genomes of 363 bird species4 (218 taxonomic families, 92% of total). Using intergenic regions and coalescent methods, we present a well-supported tree but also a marked degree of discordance. The tree confirms that Neoaves experienced rapid radiation at or near the Cretaceous-Palaeogene boundary. Sufficient loci rather than extensive taxon sampling were more effective in resolving difficult nodes. Remaining recalcitrant nodes involve species that are a challenge to model due to either extreme DNA composition, variable substitution rates, incomplete lineage sorting or complex evolutionary events such as ancient hybridization. Assessment of the effects of different genomic partitions showed high heterogeneity across the genome. We discovered sharp increases in effective population size, substitution rates and relative brain size following the Cretaceous-Palaeogene extinction event, supporting the hypothesis that emerging ecological opportunities catalysed the diversification of modern birds. The resulting phylogenetic estimate offers fresh insights into the rapid radiation of modern birds and provides a taxon-rich backbone tree for future comparative studies.
Asunto(s)
Aves , Evolución Molecular , Genoma , Filogenia , Animales , Aves/genética , Aves/clasificación , Aves/anatomía & histología , Encéfalo/anatomía & histología , Extinción Biológica , Genoma/genética , Genómica , Densidad de Población , Masculino , FemeninoRESUMEN
Whole-genome sequencing projects are increasingly populating the tree of life and characterizing biodiversity1-4. Sparse taxon sampling has previously been proposed to confound phylogenetic inference5, and captures only a fraction of the genomic diversity. Here we report a substantial step towards the dense representation of avian phylogenetic and molecular diversity, by analysing 363 genomes from 92.4% of bird families-including 267 newly sequenced genomes produced for phase II of the Bird 10,000 Genomes (B10K) Project. We use this comparative genome dataset in combination with a pipeline that leverages a reference-free whole-genome alignment to identify orthologous regions in greater numbers than has previously been possible and to recognize genomic novelties in particular bird lineages. The densely sampled alignment provides a single-base-pair map of selection, has more than doubled the fraction of bases that are confidently predicted to be under conservation and reveals extensive patterns of weak selection in predominantly non-coding DNA. Our results demonstrate that increasing the diversity of genomes used in comparative studies can reveal more shared and lineage-specific variation, and improve the investigation of genomic characteristics. We anticipate that this genomic resource will offer new perspectives on evolutionary processes in cross-species comparative analyses and assist in efforts to conserve species.
Asunto(s)
Aves/clasificación , Aves/genética , Genoma/genética , Genómica/métodos , Genómica/normas , Filogenia , Animales , Pollos/genética , Conservación de los Recursos Naturales , Conjuntos de Datos como Asunto , Pinzones/genética , Humanos , Selección Genética/genética , Sintenía/genéticaRESUMEN
We provide a molecular phylogeny for Old World swifts of genera Apus and Tachymarptis (tribe Apodini) based on a taxon-complete sampling at the species level. Phylogenetic reconstructions were based on two mitochondrial (cytochrome b, 12S rRNA) and three nuclear markers (introns of fibrinogen and glyceraldehyde 3-phosphate dehydrogenase plus anonymous marker 12884) while the myoglobin intron 2 did not show any intergeneric variation or phylogenetic signal among the target taxa at all. In contrast to previous hypotheses, the two genera Apus and Tachymarptis were shown as reciprocally monophyletic in all reconstructions. Apus was consistently divided into three major clades: (1) East Asian clade of A. pacificus and A. acuticauda, (2) African-Asian clade of A. caffer, A. batesi, A. horus, A. affinis and A. nipalensis, (3) African-Palearctic clade of eight currently accepted species among which sequences of A. apus and A. pallidus clustered in a terminal crown clade. Phylogenetic signal of all four nuclear markers was extremely shallow within and among species of tribe Apodini and even among genera, such that intra- and intergeneric relationships of Apus, Tachymarptis and Cypsiurus were poorly resolved by nuclear data alone. Four species, A. pacificus, A. barbatus, A. affinis and A. caffer were consistently found to be paraphyletic with respect to their closest relatives and possible taxonomic consequences are discussed without giving particular recommendations due to limitations of sampling. Incomplete mitochondrial lineage sorting with cytochrome-b haplotypes shared among species and across large geographic distances was observed in two species pairs: A. affinis/A. nipalensis and A. apus/A. pallidus. Mitochondrial introgression caused by extant or past gene flow was ruled out as an explanation for the low interspecific differentiation in these two cases because all nuclear markers appeared to be highly unsorted among Apus species, too. Apparently, the two extant species pairs originated from very recent dispersal and/or speciation events. The currently accepted superspecies classification within Apus was not supported by our results.
Asunto(s)
Aves/genética , Núcleo Celular/genética , Mitocondrias/genética , Filogenia , Animales , Proteínas Aviares/genética , Teorema de Bayes , Aves/clasificación , Citocromos b/genética , Marcadores Genéticos , Funciones de Verosimilitud , Modelos Genéticos , Tipificación de Secuencias Multilocus , ARN Ribosómico/genéticaRESUMEN
Encompassing some of the major hotspots of biodiversity on Earth, large mountain systems have long held the attention of evolutionary biologists. The region of the Qinghai-Tibet Plateau (QTP) is considered a biogeographic source for multiple colonization events into adjacent areas including the northern Palearctic. The faunal exchange between the QTP and adjacent regions could thus represent a one-way street ("out of" the QTP). However, immigration into the QTP region has so far received only little attention, despite its potential to shape faunal and floral communities of the QTP. In this study, we investigated centers of origin and dispersal routes between the QTP, its forested margins and adjacent regions for five clades of alpine and montane birds of the passerine superfamily Passeroidea. We performed an ancestral area reconstruction using BioGeoBEARS and inferred a time-calibrated backbone phylogeny for 279 taxa of Passeroidea. The oldest endemic species of the QTP was dated to the early Miocene (ca. 20 Ma). Several additional QTP endemics evolved in the mid to late Miocene (12-7 Ma). The inferred centers of origin and diversification for some of our target clades matched the "out of Tibet hypothesis' or the "out of Himalayas hypothesis" for others they matched the "into Tibet hypothesis." Three radiations included multiple independent Pleistocene colonization events to regions as distant as the Western Palearctic and the Nearctic. We conclude that faunal exchange between the QTP and adjacent regions was bidirectional through time, and the QTP region has thus harbored both centers of diversification and centers of immigration.
RESUMEN
Previous studies detected an influence of urban characteristics on song traits in passerine birds, that is, song adjustments to ambient noise in urban areas. Several studies already described the effect of weather conditions on the behavior of birds, but not the effect on song traits. We investigate, if song trait variability changes along a continuous urbanity gradient in Frankfurt am Main, Germany. We examined, for the first time on a larger scale, the influence of weather on song parameters. We made song recordings of three common passerine species: the blue and great tit (Cyanistes caeruleus (Linnaeus, 1758) and Parus major Linnaeus, 1758) and the European blackbird (Turdus merula Linnaeus, 1758). We measured different song traits and performed statistical analyses and modeling on a variety of variables-among them urbanity and weather parameters. Remarkably, we found only few cases of a significant influence of urbanity parameters on song traits. The influence of weather parameters (air pressure, atmospheric humidity, air and soil temperatures) on song traits was highly significant. Birds in Frankfurt face high noise pollution and might show different adaptations to high noise levels. The song trait variability of the investigated species is affected more by weather conditions than by urban characteristics in Frankfurt. However, the three species react differently to specific weather parameters. Smaller species seem to be more affected by weather than larger species.
RESUMEN
BACKGROUND: In recent years, next generation high throughput sequencing technologies have proven to be useful tools for investigations concerning the genomics or transcriptomics also of non-model species. Consequently, ornithologists have adopted these technologies and the respective bioinformatics tools to survey the genomes and transcriptomes of a few avian non-model species. The Common Blackbird is one of the most common bird species living in European cities, which has successfully colonized urban areas and for which no reference genome or transcriptome is publicly available. However, to target questions like genome wide gene expression analysis, a reference genome or transcriptome is needed. METHODS: Therefore, in this study two Common Blackbirds were sacrificed, their mRNA was isolated and analyzed by RNA-Seq to de novo assemble a transcriptome and characterize it. Illumina reads (125 bp paired-end) and a Velvet/Oases pipeline led to 162,158 transcripts. For the annotation (using Blast+), an unfiltered protein database was used. SNPs were identified using SAMtools and BCFtools. Furthermore, mRNA from three single tissues (brain, heart and liver) of the same two Common Blackbirds were sequenced by Illumina (75 bp single-end reads). The draft transcriptome and the three single tissues were compared by their BLAST hits with the package VennDiagram in R. RESULTS: Following the annotation against protein databases, we found evidence for 15,580 genes in the transcriptome (all well characterized hits after annotation). On 18% of the assembled transcripts, 144,742 SNPs were identified which are, consequently, 0.09% of all nucleotides in the assembled transcriptome. In the transcriptome and in the single tissues (brain, heart and liver), 10,182 shared genes were found. DISCUSSION: Using a next-generation technology and bioinformatics tools, we made a first step towards the genomic investigation of the Common Blackbird. The de novo assembled transcriptome is usable for downstream analyses such as differential gene expression analysis and SNP identification. This study shows the importance of the approach to sequence single tissues to understand functions of tissues, proteins and the phenotype.
RESUMEN
Songs in passerine birds are important for territory defense and mating. Speciation rates in oscine passerines are so high, due to cultural evolution, that this bird lineage makes up half of the extant bird species. Leaf warblers are a speciose Old-World passerine family of limited morphological differentiation, so that songs are even more important for species delimitation. We took 16 sonographic traits from song recordings of 80 leaf warbler taxa and correlated them with 15 potentially explanatory variables, pairwise, and in linear models. Based on a well-resolved molecular phylogeny of the same taxa, all pairwise correlations were corrected for relatedness with phylogenetically independent contrasts and phylogenetic generalized linear models were used. We found a phylogenetic signal for most song traits, but a strong one only for the duration of the longest and of the shortest element, which are presumably inherited instead of learned. Body size of a leaf warbler species is a constraint on song frequencies independent of phylogeny. At least in this study, habitat density had only marginal impact on song features, which even disappeared through phylogenetic correction. Maybe most leaf warblers avoid the deterioration through sound propagation in dense vegetation by singing from exposed perches. Latitudinal (and longitudinal) extension of the breeding ranges was correlated with most song features, especially verse duration (longer polewards and westwards) and complexity (lower polewards). Climate niche or expansion history might explain these correlations. The number of different element types per verse decreases with elevation, possibly due to fewer resources and congeneric species at higher elevations.
RESUMEN
Mosquito-borne viruses are becoming an increasing threat for Europe. One of these viruses is Usutu virus (USUV), a single-stranded RNA virus belonging to the Japanese encephalitis virus group within the family Flaviviridae. Since the occurrence of USUV among wild birds in June, 2011, infected Blackbirds (Turdus merula) have frequently been found dead in southwest Germany, cumulating in a massive die-off. Moreover, other bird species (Strigiformes) in this region have been affected. In a first study, 209 of over 600 dead birds (wild birds and birds kept in aviaries) collected from 2011 to 2013 carried USUV, more than 88% of them Blackbirds. USUV had already been detected in 2010, one year before the epizooty, in a mosquito-based surveillance program in Germany. The main epidemic area of the USUV outbreak in wild birds in southwest Germany has been similar for the last three years. In a second study during 2011 to 2013, 902 live migratory and resident birds (representing 87 bird species belonging to 14 bird orders) from four different sampling sites were bled and tested serologically and by qPCR for West Nile virus (WNV) and USUV infections. No USUV or WNV genomes were detected. Some migratory birds (mainly long-distance migrants and some partial migrants) carried neutralizing antibodies against WNV as discriminated by USUV and WNV cross-neutralization tests. Only few resident birds showed relevant USUV-specific neutralizing antibodies. The occurrence of USUV in the Upper Rhine valley area of southwest Germany is a proof of principle for the incursion and spread of other arthropod-borne (arbo)-viruses along these routes. Therefore, monitoring studies in birds and mosquitoes for the presence of arboviruses in these areas are indispensable.
Asunto(s)
Enfermedades de las Aves/epidemiología , Culicidae/virología , Virus de la Encefalitis Japonesa (Subgrupo)/aislamiento & purificación , Epidemias , Infecciones por Flavivirus/veterinaria , Fiebre del Nilo Occidental/veterinaria , Virus del Nilo Occidental/aislamiento & purificación , Animales , Anticuerpos Neutralizantes , Enfermedades de las Aves/virología , Aves , Virus de la Encefalitis Japonesa (Subgrupo)/genética , Virus de la Encefalitis Japonesa (Subgrupo)/inmunología , Encefalitis por Arbovirus , Monitoreo Epidemiológico , Infecciones por Flavivirus/epidemiología , Infecciones por Flavivirus/virología , Geografía , Alemania/epidemiología , Humanos , Fiebre del Nilo Occidental/epidemiología , Fiebre del Nilo Occidental/virología , Virus del Nilo Occidental/genética , Virus del Nilo Occidental/inmunologíaRESUMEN
The ongoing debate on the reliability of avian molecular clocks is actually based on only a small number of calibrations carried out under different assumptions with respect to the choice and constraints of calibration points or to the use of substitution models. In this study, we provide substitution rate estimates for two mitochondrial genes, cytochrome b and the control region, and age estimates for lineage splits within four subgenera of tits (Paridae: Parus, Cyanistes, Poecile and Periparus). Overall sequence divergence between cytochrome b lineages covers a range of 0.4-1.8% per million years and is thus consistent with the frequently adopted approximation for a sequence divergence between avian lineages of 1.6-2% per my. Overall rate variation is high and encompasses the 2% value in a 95% CI for model corrected data. Mean rate estimates for cytochrome b range between 1.9 and 8.9 x 10(-3) substitutions per site per lineage. Local rates differ significantly between taxonomic levels with lowest estimates for haplotype lineages. At the population/subspecies level mean sequence divergence between lineages matches the 2% rule best for most cytochrome b datasets (1.5-1.9% per my) with maximum estimates for small isolated populations like those of the Canarian P. teneriffae complex (up to 3.9% per my). Overall rate estimates for the control region range at similar values like those for cytochrome b (2.7-8.8 x 10(-3), 0.5-1.8% per my), however, within some subgenera mean rates are higher than those for cytochrome b for uncorrected sequence data. The lowest rates for both genes were calculated for coal tits of subgenus Periparus (0.04-0.6% per my). Model-corrected sequence data tend to result in higher rate estimates than uncorrected data. Increase of the gamma shape parameter goes along with a significant decrease of rate and partly age estimates, too. Divergence times for earliest deep splits within tit subgenera Periparus and Parus were dated to the mid Miocene at 10-14my bp. Most recent splits between east and west Palearctic taxa of blue, willow and great tits were dated to the Pliocene/Pleistocene boundary with the earliest estimates based on model-corrected trees. Relaxation of the Messinian calibration point leads to more recent divergence times for North African coal and blue tit populations during the mid Pliocene. Despite a relatively broad age constraint for the split between Nearctic and Palearctic Poecile due to the Pliocene re-opening of the Bering Strait, the split between chickadees and willow tits is dated considerably earlier than in former studies to the upper bound of the age constraint at 7.4 my BP.