Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Mol Microbiol ; 101(6): 982-1002, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27279148

RESUMEN

The pal/RIM ambient pH signalling pathway is crucial for the ability of pathogenic fungi to infect hosts. The Aspergillus nidulans 7-TMD receptor PalH senses alkaline pH, subsequently facilitating ubiquitination of the arrestin PalF. Ubiquitinated PalF triggers downstream signalling events. The mechanism(s) by which PalH transduces the alkaline pH signal to PalF is poorly understood. We show that PalH is phosphorylated in a signal dependent manner, resembling mammalian GPCRs, although PalH phosphorylation, in contrast to mammalian GPCRs, is arrestin dependent. A genetic screen revealed that an ambient-exposed region comprising the extracellular loop connecting TM4-TM5 and ambient-proximal residues within TM5 is required for signalling. In contrast, substitution by alanines of four aromatic residues within TM6 and TM7 results in a weak 'constitutive' activation of the pathway. Our data support the hypothesis that PalH mechanistically resembles mammalian GPCRs that signal via arrestins, such that the relative positions of individual helices within the heptahelical bundle determines the Pro316-dependent transition between inactive and active PalH conformations, governed by an ambient-exposed region including critical Tyr259 that potentially represents an agonist binding site. These findings open the possibility of screening for agonist compounds stabilizing the inactive conformation of PalH, which might act as antifungal drugs against ascomycetes.


Asunto(s)
Antifúngicos/farmacología , Aspergillus nidulans/efectos de los fármacos , Aspergillus nidulans/genética , Proteínas Fúngicas/genética , Secuencia de Aminoácidos , Arrestina/genética , Arrestina/metabolismo , Aspergillus nidulans/metabolismo , Aspergillus nidulans/patogenicidad , Membrana Celular/metabolismo , Análisis Mutacional de ADN/métodos , Proteínas Fúngicas/metabolismo , Concentración de Iones de Hidrógeno , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Terapia Molecular Dirigida , Fosforilación , Estructura Terciaria de Proteína , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Transducción de Señal , Ubiquitina/metabolismo
2.
Mol Microbiol ; 98(6): 1051-72, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26303777

RESUMEN

The Aspergillus nidulans PacC transcription factor mediates gene regulation in response to alkaline ambient pH which, signalled by the Pal pathway, results in the processing of PacC(72) to PacC(27) via PacC(53). Here we investigate two levels at which the pH regulatory system is transcriptionally moderated by pH and identify and characterise a new component of the pH regulatory machinery, PacX. Transcript level analysis and overexpression studies demonstrate that repression of acid-expressed palF, specifying the Pal pathway arrestin, probably by PacC(27) and/or PacC(53), prevents an escalating alkaline pH response. Transcript analyses using a reporter and constitutively expressed pacC trans-alleles show that pacC preferential alkaline-expression results from derepression by depletion of the acid-prevalent PacC(72) form. We additionally show that pacC repression requires PacX. pacX mutations suppress PacC processing recalcitrant mutations, in part, through derepressed PacC levels resulting in traces of PacC(27) formed by pH-independent proteolysis. pacX was cloned by impala transposon mutagenesis. PacX, with homologues within the Leotiomyceta, has an unusual structure with an amino-terminal coiled-coil and a carboxy-terminal zinc binuclear cluster. pacX mutations indicate the importance of these regions. One mutation, an unprecedented finding in A. nidulans genetics, resulted from an insertion of an endogenous Fot1-like transposon.


Asunto(s)
Aspergillus nidulans/metabolismo , Proteínas Fúngicas/metabolismo , Dedos de Zinc , Secuencia de Aminoácidos , Aspergillus nidulans/genética , Sitios de Unión , Elementos Transponibles de ADN , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/aislamiento & purificación , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Concentración de Iones de Hidrógeno , Mutagénesis , Mutación , Homología de Secuencia de Aminoácido , Transducción de Señal , Dedos de Zinc/genética
3.
Trends Microbiol ; 16(6): 291-300, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18457952

RESUMEN

Many fungi grow over a wide pH range and their gene expression is tailored to the environmental pH. In Aspergillus nidulans, the transcription factor PacC, an activator of genes expressed in alkaline conditions and a repressor of those expressed in acidic conditions, undergoes two processing proteolyses, the first being pH-signal dependent and the second proteasomal. Signal transduction involves a 'go-between' connecting two complexes, one of which comprises two plasma membrane proteins and an arrestin and the other comprises PacC, a cysteine protease, a scaffold and endosomal components. The Saccharomyces cerevisiae PacC orthologue, Rim101p, differs in that it does not undergo the second round of proteolysis and it functions directly as a repressor only. PacC/Rim101-mediated pH regulation is crucial to fungal pathogenicity.


Asunto(s)
Proteínas Fúngicas/metabolismo , Hongos/fisiología , Regulación Fúngica de la Expresión Génica , Transducción de Señal , Animales , Aspergillus nidulans/genética , Aspergillus nidulans/patogenicidad , Aspergillus nidulans/fisiología , Membrana Celular/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endocitosis , Endosomas/metabolismo , Proteínas Fúngicas/genética , Hongos/clasificación , Hongos/genética , Hongos/patogenicidad , Concentración de Iones de Hidrógeno , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
Eukaryot Cell ; 6(12): 2365-75, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17951518

RESUMEN

The Aspergillus nidulans ambient pH signaling pathway involves two transmembrane domain (TMD)-containing proteins, PalH and PalI. We provide in silico and mutational evidence suggesting that PalI is a three TMD (3-TMD) protein with an N-terminal signal peptide, and we show that PalI localizes to the plasma membrane. PalI is not essential for the proteolytic conversion of the PacC translation product into the processed 27-kDa form, but its absence markedly reduces the accumulation of the 53-kDa intermediate after cells are shifted to an alkaline pH. PalI and its homologues contain a predicted luminal, conserved Gly-Cys-containing motif that distantly resembles a Gly-rich dimerization domain. The Gly44Arg and Gly47Asp substitutions within this motif lead to loss of function. The Gly47Asp substitution prevents plasma membrane localization of PalI-green fluorescent protein (GFP) and leads to its missorting into the multivesicular body pathway. Overexpression of the likely ambient alkaline pH receptor, the 7-TMD protein PalH, partially suppresses the null palI32 mutation. Although some PalH-GFP localizes to the plasma membrane, it predominates in internal membranes. However, the coexpression of PalI to stoichiometrically similar levels results in the strong predominance of PalH-GFP in the plasma membrane. Thus, one role for PalI, but possibly not the only role, is to assist with plasma membrane localization of PalH. These data, considered along with previous reports for both Saccharomyces cerevisiae and A. nidulans, strongly support the prevailing model of pH signaling involving two spatially segregated complexes: a plasma membrane complex containing PalH, PalI, and the arrestin-like protein PalF and an endosomal membrane complex containing PalA and PalB, to which PacC is recruited for its proteolytic activation.


Asunto(s)
Aspergillus nidulans/metabolismo , Membrana Celular/metabolismo , Proteínas de la Membrana/fisiología , Alelos , Secuencia de Aminoácidos , Dimerización , Endosomas/metabolismo , Prueba de Complementación Genética , Proteínas Fluorescentes Verdes/metabolismo , Concentración de Iones de Hidrógeno , Modelos Biológicos , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Transducción de Señal
5.
Mol Cell Biol ; 23(5): 1647-55, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12588984

RESUMEN

The zinc finger transcription factor PacC undergoes two-step proteolytic activation in response to alkaline ambient pH. PalA is a component of the fungal ambient pH signal transduction pathway. Its mammalian homologue AIP1/Alix interacts with the apoptosis-linked protein ALG-2. We show that both PalA and AIP1/Alix recognize a protein-protein binding motif that we denote YPXL/I, where Tyr, Pro, and Leu/Ile are crucial for its interactive properties. Two such motifs flanking the signaling protease cleavage site mediate direct binding of PalA to PacC, required for the first and only pH-regulated cleavage of this transcription factor. PalA can bind the "closed" (i.e., wild-type full-length) conformer of PacC, suggesting that PalA binding constitutes the first stage in the two-step proteolytic cascade, recruiting or facilitating access of the signaling protease, presumably PalB. In addition to recognizing YPXL/I motifs, both PalA and AIP1/Alix interact with the Aspergillus class E Vps protein Vps32 homologue, a member of a protein complex involved in the early steps of the multivesicular body pathway, suggesting that this interaction is an additional feature of proteins of the PalA/AIP1/Alix family.


Asunto(s)
Aspergillus nidulans/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas Portadoras/metabolismo , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Alelos , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Apoptosis , Western Blotting , Proteínas de Unión al Calcio/química , Proteínas Portadoras/química , Proteínas de Ciclo Celular , Complejos de Clasificación Endosomal Requeridos para el Transporte , Proteínas Fúngicas/química , Glutatión Transferasa/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Immunoblotting , Modelos Biológicos , Datos de Secuencia Molecular , Fenotipo , Plásmidos/metabolismo , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Transducción de Señal , Factores de Transcripción/genética , Transcripción Genética , Técnicas del Sistema de Dos Híbridos
6.
Genetics ; 171(1): 393-401, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15944343

RESUMEN

The alkaline ambient pH signal transduction pathway component PalC has no assigned molecular role. Therefore we attempted a gene-specific mutational analysis and obtained 55 new palC loss-of-function alleles including 24 single residue substitutions. Refined similarity searches reveal conserved PalC regions including one with convincing similarity to the BRO1 domain, denoted PCBROH, where clustering of mutational changes, including PCBROH key residue substitutions, supports its structural and/or functional importance. Since the BRO1 domain occurs in the multivesicular body (MVB) pathway protein Bro1/Vps31 and also the pH signal transduction protein PalA (Rim20), both of which interact with MVB component (ESCRT-III protein) Vps32/Snf7, this might reflect a further link between the pH response and endocytosis.


Asunto(s)
Aspergillus nidulans/genética , Proteínas Fúngicas/genética , Mutación , Secuencia de Aminoácidos , Secuencia Conservada/genética , Análisis Mutacional de ADN , Complejos de Clasificación Endosomal Requeridos para el Transporte , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , Filogenia , Proteínas de Saccharomyces cerevisiae/genética , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Transducción de Señal , Proteínas de Transporte Vesicular/genética
7.
J Mol Biol ; 334(4): 667-84, 2003 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-14636595

RESUMEN

The transcription factor PacC, mediating regulation of gene expression by ambient pH in the genetically amenable fungus Aspergillus nidulans, contains a three zinc finger DNA-binding domain (zf-DBD) including a nuclear localisation signal (NLS). We selected 38 novel mutations impairing PacC function, of which 21 missense mutations identify individual residues essential for zf-DBD structure/function. Our functional analysis agrees with our previous conclusion that finger 1 does not bind DNA and provides in vivo evidence that Trp80 and Trp116, located in the Cys knuckles of adjacent zinc fingers, are critical for zf-DBD structure/function. In the finger 3 alpha-helix, Gln155 (+4) is specifically involved in contacting DNA, while the major role of Lys159 (+6) resides in the nuclear localisation of the protein. In contrast, Lys158 is essential for DNA binding and for nuclear localisation. As finger 3 suffices to drive nuclear localisation of green fluorescent protein, we conclude that it contains an NLS including essential Lys158 and Lys159. These residues are within an alpha-helical basic sequence that is completely conserved amongst zinc fingers of the PacC/RIM101 family and present in an identical position of the last finger alpha-helix of Drosophila Cubitus interruptus, where it is also involved in nuclear localisation. We propose that PacC and Gli/Ci zf-DBDs belong to a subclass of these domains characterised by possession of a pair of conserved Trp residues involved in the interaction between the two most N-terminal fingers and the presence of an NLS in the alpha-helix of the most C-terminal finger. Loss of PacC nuclear localisation resulting from His142Leu (beta-strand) and Phe151Ser (hydrophobic core) substitutions in finger 3 suggests that its folding is required for NLS function. Overlap of DNA binding and NLS may aid release of PacC from its cognate importer(s) upon nuclear translocation, as suggested for zinc binuclear cluster proteins.


Asunto(s)
Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Señales de Localización Nuclear , Conformación Proteica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Dedos de Zinc , Transporte Activo de Núcleo Celular , Secuencia de Aminoácidos , Aspergillus nidulans/citología , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Sitios de Unión , Proteínas Fúngicas/química , Humanos , Datos de Secuencia Molecular , Mutación , Fenotipo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Fracciones Subcelulares/química , Fracciones Subcelulares/metabolismo , Factores de Transcripción/química , alfa Carioferinas/metabolismo , Ácido gamma-Aminobutírico/metabolismo
8.
J Biol Chem ; 282(48): 34735-47, 2007 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-17911112

RESUMEN

The 72-kDa zinc finger transcription factor PacC, distantly related to Ci/Gli developmental regulators, undergoes two-step proteolytic processing in response to alkaline ambient pH. "Signaling protease" cleavage of PacC(72) removes a processing-inhibitory C-terminal domain, making its truncated PacC(53) product accessible to a second "processing" protease, yielding PacC(27). Features of the processing proteolysis suggested the proteasome as a candidate protease. We constructed, using gene replacements, two missense active site mutations in preB, the Aspergillus nidulans orthologue of Saccharomyces cerevisiae PRE2 encoding the proteasome beta5 subunit. preB1(K101A) is lethal. Viable preB2(K101R) impairs growth and, like its equivalent pre2(K108R) in yeast, impairs chymotryptic activity. pre2(K108R) and preB2(K101R) active site mutations consistently shift position of the scissile bonds when PacC is processed in S. cerevisiae and A. nidulans, respectively, indicating that PacC must be a direct substrate of the proteasome. preB2(K101R) leads to a 2-3-fold elevation in NimE mitotic cyclin levels but appears to result in PacC instability, suggesting an altered balance between processing and degradation. preB2(K101R) compensates the marked impairment in PacC(27) formation resulting from deletion of the processing efficiency determinant in PacC, further indicating direct proteasomal involvement in the formation of PacC(27). Deletion of a Gly-Pro-Ala-rich region within this processing efficiency determinant markedly destabilizes PacC. Arg substitutions of Lys residues within this efficiency determinant and nearby show that they cooperate to promote PacC processing. A quadruple Lys-to-Arg substitution (4K-->R) impairs formation of PacC(27) and leads to persistence of PacC(53). Wild-type PacC(53) becomes multiply phosphorylated upon alkaline pH exposure. Processing-impaired 4K-->R PacC(53) becomes excessively phosphorylated.


Asunto(s)
Aspergillus nidulans/metabolismo , Proteínas Fúngicas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Factores de Transcripción/metabolismo , Alelos , Secuencia de Aminoácidos , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , Mutación , Fenotipo , Fosforilación , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/metabolismo , Dedos de Zinc
9.
Eukaryot Cell ; 6(6): 960-70, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17416893

RESUMEN

The Aspergillus nidulans pH-responsive transcription factor PacC is modulated by limited, two-step proteolysis. The first, pH-regulated cleavage occurs in the 24-residue highly conserved "signaling protease box" in response to the alkaline pH signal. This is transduced by the Pal signaling pathway, containing the predicted calpain-like cysteine protease and likely signaling protease, PalB. In this work, we carried out classical mutational analysis of the putative signaling protease PalB, and we describe 9 missense and 18 truncating loss-of-function (including null) mutations. Mutations in the region of and affecting directly the predicted catalytic cysteine strongly support the deduction that PalB is a cysteine protease. Truncating and missense mutations affecting the C terminus highlight the importance of this region. Analysis of three-hemagglutinin-tagged PalB in Western blots demonstrates that PalB levels are independent of pH and Pal signal transduction. We have followed the processing of MYC(3)-tagged PacC in Western blots. We show unequivocally that PalB is essential for signaling proteolysis and is definitely not the processing protease. In addition, we have replaced 15 residues of the signaling protease box of MYC(3)-tagged PacC (pacC900) with alanine. The majority of these substitutions are silent. Leu481Ala, Tyr493Ala, and Gln499Ala result in delayed PacC processing in response to shifting from acidic to alkaline medium, as determined by Western blot analysis. Leu498Ala reduces function much more markedly, as determined by plate tests and processing recalcitrance. Excepting Leu498, this demonstrates that PacC signaling proteolysis is largely independent of sequence in the cleavage region.


Asunto(s)
Aspergillus nidulans/fisiología , Cisteína Endopeptidasas/metabolismo , Proteínas Fúngicas/metabolismo , Concentración de Iones de Hidrógeno , Transducción de Señal/fisiología , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Cisteína Endopeptidasas/genética , Análisis Mutacional de ADN , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Datos de Secuencia Molecular , Mutagénesis , Mutación , Fenotipo , Alineación de Secuencia , Factores de Transcripción/genética
10.
Traffic ; 8(10): 1346-64, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17696968

RESUMEN

PalC, distantly related to Saccharomyces cerevisiae peripheral endosomal sorting complexes required for transport III (ESCRT-III) component Bro1p and one of six Aspergillus nidulans pH signalling proteins, contains a Bro1 domain. Green fluorescent protein (GFP)-tagged PalC is recruited to plasma membrane-associated punctate structures upon alkalinization, when pH signalling is active. PalC recruitment to these structures is dependent on the seven transmembrane domain (7-TMD) receptor and likely pH sensor PalH. PalC is a two-hybrid interactor of the ESCRT-III Vps20/Vps32 subcomplex and binds Vps32 directly. This binding is largely impaired by Pro439Phe, Arg442Ala and Arg442His substitutions in a conserved region mediating interaction of Bro1p with Vps32p, but these substitutions do not prevent cortical punctate localization, indicating Vps32 independence. In contrast, Arg442Delta impairs Vps32 binding and prevents PalC-GFP recruitment to cortical structures. pH signalling involves a plasma membrane complex including the 7-TMD receptor PalH and the arrestin-like PalF and an endosomal membrane complex involving the PalB protease, the transcription factor PacC and the Vps32 binding, Bro1-domain-containing protein PalA. PalC, which localizes to cortical structures and can additionally bind a component of ESCRT-III, has the features required to bridge these two entities. A likely S. cerevisiae orthologue of PalC has been identified, providing the basis for a unifying hypothesis of gene regulation by ambient pH in ascomycetes.


Asunto(s)
Aspergillus nidulans/metabolismo , Membrana Celular/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal/fisiología , Secuencia de Aminoácidos , Secuencia de Bases , Complejos de Clasificación Endosomal Requeridos para el Transporte , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo
11.
Eukaryot Cell ; 5(11): 1838-46, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16963627

RESUMEN

An Aspergillus nidulans mutation, designated nmdA1, has been selected as a partial suppressor of a frameshift mutation and shown to truncate the homologue of the Saccharomyces cerevisiae nonsense-mediated mRNA decay (NMD) surveillance component Nmd2p/Upf2p. nmdA1 elevates steady-state levels of premature termination codon-containing transcripts, as demonstrated using mutations in genes encoding xanthine dehydrogenase (hxA), urate oxidase (uaZ), the transcription factor mediating regulation of gene expression by ambient pH (pacC), and a protease involved in pH signal transduction (palB). nmdA1 can also stabilize pre-mRNA (unspliced) and wild-type transcripts of certain genes. Certain premature termination codon-containing transcripts which escape NMD are relatively stable, a feature more in common with certain nonsense codon-containing mammalian transcripts than with those in S. cerevisiae. As in S. cerevisiae, 5' nonsense codons are more effective at triggering NMD than 3' nonsense codons. Unlike the mammalian situation but in common with S. cerevisiae and other lower eukaryotes, A. nidulans is apparently impervious to the position of premature termination codons with respect to the 3' exon-exon junction.


Asunto(s)
Aspergillus nidulans/genética , Codón sin Sentido , Mutación del Sistema de Lectura , Estabilidad del ARN , Proteínas Adaptadoras Transductoras de Señales , Secuencia de Aminoácidos , Animales , Aspergillus nidulans/metabolismo , Exones , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Ácido Glutámico/metabolismo , Humanos , Datos de Secuencia Molecular , Nitrógeno/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Urato Oxidasa/genética , Urato Oxidasa/metabolismo , Xantina Oxidasa/genética , Xantina Oxidasa/metabolismo
12.
Mol Genet Genomics ; 274(3): 295-306, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16133167

RESUMEN

The afp gene encoding the antifungal protein (AFP) of Aspergillus giganteus has a prototypical alkaline gene expression pattern, which suggests that the gene might be under the control of the ambient pH-dependent zinc-finger transcription factor PacC. This notion is corroborated by the presence in the upstream region of afp of two putative PacC binding sites, afpP1 and afpP2, which are specifically recognised by the PacC protein of A. nidulans in vitro. However, in this report we provide several lines of evidence to show that pH-dependent up-regulation of afp is not mediated by transcriptional activation through PacC. (1) The temporal expression pattern of the A. giganteus pacC gene does not parallel the accumulation of the afp mRNA during cultivation. (2) Inactivation of afpP1 and afpP2 did not reduce promoter activity under alkaline conditions, as determined from the relative wild-type and mutant afp::lacZ reporter activities in A. nidulans. (3) Reporter activities in acidity- and alkalinity-mimicking mutant strains are inconsistent with a positive role for PacC in afp expression. (4) In A. giganteus, the pH-dependent increase in afp mRNA and AFP levels can be completely prevented by the calcineurin inhibitor FK506, suggesting that the calcineurin signalling pathway might control the in vivo activation of the afp promoter by alkaline pH.


Asunto(s)
Aspergillus/genética , Inhibidores de la Calcineurina , Proteínas Fúngicas/metabolismo , Factores de Transcripción/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética , Secuencia de Aminoácidos , Aspergillus/metabolismo , Secuencia de Bases , Calcineurina/metabolismo , Cartilla de ADN , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , Mutación/genética , Regiones Promotoras Genéticas/efectos de los fármacos , Regiones Promotoras Genéticas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN , Tacrolimus/farmacología
13.
EMBO J ; 21(6): 1350-9, 2002 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-11889040

RESUMEN

The Aspergillus PacC transcription factor undergoes proteolytic activation in response to alkaline ambient pH. In acidic environments, the 674 residue translation product adopts a 'closed' conformation, protected from activation through intramolecular interactions involving the < or = 150 residue C-terminal domain. pH signalling converts PacC to an accessible conformation enabling processing cleavage within residues 252--254. We demonstrate that activation of PacC requires two sequential proteolytic steps. First, the 'closed' translation product is converted to an accessible, committed intermediate by proteolytic elimination of the C-terminus. This ambient pH-regulated cleavage is required for the final, pH-independent processing reaction and is mediated by a distinct signalling protease (possibly PalB). The signalling protease cleaves PacC between residues 493 and 500, within a conserved 24 residue 'signalling protease box'. Precise deletion or Leu498Ser substitution prevents formation of the committed and processed forms, demonstrating that signalling cleavage is essential for final processing. In contrast, signalling cleavage is not required for processing of the Leu340Ser protein, which lacks interactions preventing processing. In its two-step mechanism, PacC processing can be compared with regulated intramembrane proteolysis.


Asunto(s)
Endopeptidasas/metabolismo , Proteínas Fúngicas/biosíntesis , Procesamiento Proteico-Postraduccional , Factores de Transcripción/biosíntesis , Dedos de Zinc , Secuencia de Aminoácidos , Animales , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Sitios de Unión , Proteínas Fúngicas/genética , Leucina/genética , Leucina/metabolismo , Datos de Secuencia Molecular , Mutagénesis , Biosíntesis de Proteínas , Ratas , Homología de Secuencia de Aminoácido , Serina/genética , Serina/metabolismo , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA