Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 110(5): 846-862, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37086723

RESUMEN

Craniosynostosis (CS) is the most common congenital cranial anomaly. Several Mendelian forms of syndromic CS are well described, but a genetic etiology remains elusive in a substantial fraction of probands. Analysis of exome sequence data from 526 proband-parent trios with syndromic CS identified a marked excess (observed 98, expected 33, p = 4.83 × 10-20) of damaging de novo variants (DNVs) in genes highly intolerant to loss-of-function variation (probability of LoF intolerance > 0.9). 30 probands harbored damaging DNVs in 21 genes that were not previously implicated in CS but are involved in chromatin modification and remodeling (4.7-fold enrichment, p = 1.1 × 10-11). 17 genes had multiple damaging DNVs, and 13 genes (CDK13, NFIX, ADNP, KMT5B, SON, ARID1B, CASK, CHD7, MED13L, PSMD12, POLR2A, CHD3, and SETBP1) surpassed thresholds for genome-wide significance. A recurrent gain-of-function DNV in the retinoic acid receptor alpha (RARA; c.865G>A [p.Gly289Arg]) was identified in two probands with similar CS phenotypes. CS risk genes overlap with those identified for autism and other neurodevelopmental disorders, are highly expressed in cranial neural crest cells, and converge in networks that regulate chromatin modification, gene transcription, and osteoblast differentiation. Our results identify several CS loci and have major implications for genetic testing and counseling.


Asunto(s)
Craneosinostosis , Tretinoina , Humanos , Mutación , Craneosinostosis/genética , Regulación de la Expresión Génica , Cromatina , Predisposición Genética a la Enfermedad
2.
Cereb Cortex ; 33(6): 2912-2918, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35739418

RESUMEN

Recent trio-based whole-exome sequencing studies of congenital hydrocephalus and nonsyndromic craniosynostosis have identified multiple novel disease genes that have illuminated the pathogenesis of these disorders and shed new insight into the genetic regulation of human brain and skull development. Continued study of these and other historically understudied developmental anomalies has the potential to replace the current antiquated, anatomically based disease classification systems with a molecular nomenclature that may increase precision for genetic counseling, prognostication, and surgical treatment stratification-including when not to operate. Data will also inform future clinical trials, catalyze the development of targeted therapies, and generate infrastructure and publicly available data sets relevant for other related nonsurgical neurodevelopmental and neuropsychiatric diseases.


Asunto(s)
Craneosinostosis , Cráneo , Humanos , Craneosinostosis/genética , Craneosinostosis/cirugía , Predicción , Biología Molecular
3.
Hum Genet ; 142(1): 21-32, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35997807

RESUMEN

Lambdoid craniosynostosis (CS) is a congenital anomaly resulting from premature fusion of the cranial suture between the parietal and occipital bones. Predominantly sporadic, it is the rarest form of CS and its genetic etiology is largely unexplored. Exome sequencing of 25 kindreds, including 18 parent-offspring trios with sporadic lambdoid CS, revealed a marked excess of damaging (predominantly missense) de novo mutations that account for ~ 40% of sporadic cases. These mutations clustered in the BMP signaling cascade (P = 1.6 × 10-7), including mutations in genes encoding BMP receptors (ACVRL1 and ACVR2A), transcription factors (SOX11, FOXO1) and a transcriptional co-repressor (IFRD1), none of which have been implicated in other forms of CS. These missense mutations are at residues critical for substrate or target sequence recognition and many are inferred to cause genetic gain-of-function. Additionally, mutations in transcription factor NFIX were implicated in syndromic craniosynostosis affecting diverse sutures. Single cell RNA sequencing analysis of the mouse lambdoid suture identified enrichment of mutations in osteoblast precursors (P = 1.6 × 10-6), implicating perturbations in the balance between proliferation and differentiation of osteoprogenitor cells in lambdoid CS. The results contribute to the growing knowledge of the genetics of CS, have implications for genetic counseling, and further elucidate the molecular etiology of premature suture fusion.


Asunto(s)
Craneosinostosis , Ratones , Animales , Craneosinostosis/genética , Craneosinostosis/metabolismo , Mutación , Transducción de Señal/genética , Factores de Transcripción/genética , Diferenciación Celular , Factores de Transcripción NFI/genética , Factores de Transcripción NFI/metabolismo
4.
Genet Med ; 25(1): 143-150, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36260083

RESUMEN

PURPOSE: Craniofacial microsomia (CFM) represents a spectrum of craniofacial malformations, ranging from isolated microtia with or without aural atresia to underdevelopment of the mandible, maxilla, orbit, facial soft tissue, and/or facial nerve. The genetic causes of CFM remain largely unknown. METHODS: We performed genome sequencing and linkage analysis in patients and families with microtia and CFM of unknown genetic etiology. The functional consequences of damaging missense variants were evaluated through expression of wild-type and mutant proteins in vitro. RESULTS: We studied a 5-generation kindred with microtia, identifying a missense variant in FOXI3 (p.Arg236Trp) as the cause of disease (logarithm of the odds = 3.33). We subsequently identified 6 individuals from 3 additional kindreds with microtia-CFM spectrum phenotypes harboring damaging variants in FOXI3, a regulator of ectodermal and neural crest development. Missense variants in the nuclear localization sequence were identified in cases with isolated microtia with aural atresia and found to affect subcellular localization of FOXI3. Loss of function variants were found in patients with microtia and mandibular hypoplasia (CFM), suggesting dosage sensitivity of FOXI3. CONCLUSION: Damaging variants in FOXI3 are the second most frequent genetic cause of CFM, causing 1% of all cases, including 13% of familial cases in our cohort.


Asunto(s)
Microtia Congénita , Síndrome de Goldenhar , Micrognatismo , Humanos , Síndrome de Goldenhar/genética , Microtia Congénita/genética , Oído/anomalías , Cara
5.
Genet Med ; 25(9): 100883, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37154149

RESUMEN

PURPOSE: Studies have previously implicated PRRX1 in craniofacial development, including demonstration of murine Prrx1 expression in the preosteogenic cells of the cranial sutures. We investigated the role of heterozygous missense and loss-of-function (LoF) variants in PRRX1 associated with craniosynostosis. METHODS: Trio-based genome, exome, or targeted sequencing were used to screen PRRX1 in patients with craniosynostosis; immunofluorescence analyses were used to assess nuclear localization of wild-type and mutant proteins. RESULTS: Genome sequencing identified 2 of 9 sporadically affected individuals with syndromic/multisuture craniosynostosis, who were heterozygous for rare/undescribed variants in PRRX1. Exome or targeted sequencing of PRRX1 revealed a further 9 of 1449 patients with craniosynostosis harboring deletions or rare heterozygous variants within the homeodomain. By collaboration, 7 additional individuals (4 families) were identified with putatively pathogenic PRRX1 variants. Immunofluorescence analyses showed that missense variants within the PRRX1 homeodomain cause abnormal nuclear localization. Of patients with variants considered likely pathogenic, bicoronal or other multisuture synostosis was present in 11 of 17 cases (65%). Pathogenic variants were inherited from unaffected relatives in many instances, yielding a 12.5% penetrance estimate for craniosynostosis. CONCLUSION: This work supports a key role for PRRX1 in cranial suture development and shows that haploinsufficiency of PRRX1 is a relatively frequent cause of craniosynostosis.


Asunto(s)
Craneosinostosis , Proteínas de Homeodominio , Animales , Humanos , Ratones , Secuencia de Bases , Suturas Craneales/patología , Craneosinostosis/genética , Genes Homeobox , Proteínas de Homeodominio/genética , Penetrancia
6.
J Med Genet ; 59(2): 165-169, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-33436522

RESUMEN

BACKGROUND: Pathogenic heterozygous SIX1 variants (predominantly missense) occur in branchio-otic syndrome (BOS), but an association with craniosynostosis has not been reported. METHODS: We investigated probands with craniosynostosis of unknown cause using whole exome/genome (n=628) or RNA (n=386) sequencing, and performed targeted resequencing of SIX1 in 615 additional patients. Expression of SIX1 protein in embryonic cranial sutures was examined in the Six1nLacZ/+ reporter mouse. RESULTS: From 1629 unrelated cases with craniosynostosis we identified seven different SIX1 variants (three missense, including two de novo mutations, and four nonsense, one of which was also present in an affected twin). Compared with population data, enrichment of SIX1 loss-of-function variants was highly significant (p=0.00003). All individuals with craniosynostosis had sagittal suture fusion; additionally four had bilambdoid synostosis. Associated BOS features were often attenuated; some carrier relatives appeared non-penetrant. SIX1 is expressed in a layer basal to the calvaria, likely corresponding to the dura mater, and in the mid-sagittal mesenchyme. CONCLUSION: Craniosynostosis is associated with heterozygous SIX1 variants, with possible enrichment of loss-of-function variants compared with classical BOS. We recommend screening of SIX1 in craniosynostosis, particularly when sagittal±lambdoid synostosis and/or any BOS phenotypes are present. These findings highlight the role of SIX1 in cranial suture homeostasis.


Asunto(s)
Craneosinostosis/genética , Proteínas de Homeodominio/genética , Animales , Preescolar , Estudios de Cohortes , Suturas Craneales/embriología , Suturas Craneales/patología , Craneosinostosis/complicaciones , Craneosinostosis/embriología , Análisis Mutacional de ADN , Estudios de Asociación Genética , Proteínas de Homeodominio/fisiología , Humanos , Lactante , Ratones , Linaje , Fenotipo , RNA-Seq , Secuenciación Completa del Genoma
7.
Proc Natl Acad Sci U S A ; 117(32): 19367-19375, 2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32719112

RESUMEN

Whole-exome sequencing (WES) has facilitated the discovery of genetic lesions underlying monogenic disorders. Incomplete penetrance and variable expressivity suggest a contribution of additional genetic lesions to clinical manifestations and outcome. Some monogenic disorders may therefore actually be digenic. However, only a few digenic disorders have been reported, all discovered by candidate gene approaches applied to at least one locus. We propose here a two-locus genome-wide test for detecting digenic inheritance in WES data. This approach uses the gene as the unit of analysis and tests all pairs of genes to detect pairwise gene × gene interactions underlying disease. It is a case-only method, which has several advantages over classic case-control tests, in particular by avoiding recruitment of controls. Our simulation studies based on real WES data identified two major sources of type I error inflation in this case-only test: linkage disequilibrium and population stratification. Both were corrected by specific procedures. Moreover, our case-only approach is more powerful than the corresponding case-control test for detecting digenic interactions in various population stratification scenarios. Finally, we confirmed the potential of our unbiased, genome-wide approach by successfully identifying a previously reported digenic lesion in patients with craniosynostosis. Our case-only test is a powerful and timely tool for detecting digenic inheritance in WES data from patients.


Asunto(s)
Secuenciación del Exoma/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Herencia Multifactorial , Craneosinostosis/genética , Epistasis Genética , Exoma/genética , Ligamiento Genético , Variación Genética , Estudio de Asociación del Genoma Completo , Humanos , Modelos Genéticos
8.
Proc Natl Acad Sci U S A ; 116(30): 15116-15121, 2019 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-31292255

RESUMEN

Craniosynostosis (CS) is a frequent congenital anomaly featuring the premature fusion of 1 or more sutures of the cranial vault. Syndromic cases, featuring additional congenital anomalies, make up 15% of CS. While many genes underlying syndromic CS have been identified, the cause of many syndromic cases remains unknown. We performed exome sequencing of 12 syndromic CS cases and their parents, in whom previous genetic evaluations were unrevealing. Damaging de novo or transmitted loss of function (LOF) mutations were found in 8 genes that are highly intolerant to LOF mutation (P = 4.0 × 10-8); additionally, a rare damaging mutation in SOX11, which has a lower level of intolerance, was identified. Four probands had rare damaging mutations (2 de novo) in TFAP2B, a transcription factor that orchestrates neural crest cell migration and differentiation; this mutation burden is highly significant (P = 8.2 × 10-12). Three probands had rare damaging mutations in GLI2, SOX11, or GPC4, which function in the Hedgehog, BMP, and Wnt signaling pathways; other genes in these pathways have previously been implicated in syndromic CS. Similarly, damaging de novo mutations were identified in genes encoding the chromatin modifier KAT6A, and CTNNA1, encoding catenin α-1. These findings establish TFAP2B as a CS gene, have implications for assessing risk to subsequent children in these families, and provide evidence implicating other genes in syndromic CS. This high yield indicates the value of performing exome sequencing of syndromic CS patients when sequencing of known disease loci is unrevealing.


Asunto(s)
Craneosinostosis/genética , Glipicanos/genética , Histona Acetiltransferasas/genética , Mutación , Proteínas Nucleares/genética , Factores de Transcripción SOXC/genética , Factor de Transcripción AP-2/genética , Proteína Gli2 con Dedos de Zinc/genética , alfa Catenina/genética , Adolescente , Niño , Preescolar , Craneosinostosis/diagnóstico , Craneosinostosis/patología , Exoma , Femenino , Expresión Génica , Humanos , Masculino , Linaje , Medición de Riesgo , Transducción de Señal , Cráneo/anomalías , Cráneo/crecimiento & desarrollo , Cráneo/metabolismo , Secuenciación del Exoma
9.
Hum Genet ; 140(7): 1109-1120, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33944996

RESUMEN

Located in the critical 1p36 microdeletion region, the chromodomain helicase DNA-binding protein 5 (CHD5) gene encodes a subunit of the nucleosome remodeling and deacetylation (NuRD) complex required for neuronal development. Pathogenic variants in six of nine chromodomain (CHD) genes cause autosomal dominant neurodevelopmental disorders, while CHD5-related disorders are still unknown. Thanks to GeneMatcher and international collaborations, we assembled a cohort of 16 unrelated individuals harboring heterozygous CHD5 variants, all identified by exome sequencing. Twelve patients had de novo CHD5 variants, including ten missense and two splice site variants. Three familial cases had nonsense or missense variants segregating with speech delay, learning disabilities, and/or craniosynostosis. One patient carried a frameshift variant of unknown inheritance due to unavailability of the father. The most common clinical features included language deficits (81%), behavioral symptoms (69%), intellectual disability (64%), epilepsy (62%), and motor delay (56%). Epilepsy types were variable, with West syndrome observed in three patients, generalized tonic-clonic seizures in two, and other subtypes observed in one individual each. Our findings suggest that, in line with other CHD-related disorders, heterozygous CHD5 variants are associated with a variable neurodevelopmental syndrome that includes intellectual disability with speech delay, epilepsy, and behavioral problems as main features.


Asunto(s)
ADN Helicasas/genética , Discapacidad Intelectual/genética , Mutación Missense , Proteínas del Tejido Nervioso/genética , Trastornos del Neurodesarrollo/genética , Adolescente , Dominio Catalítico , Niño , Preescolar , Estudios de Cohortes , Epilepsia/genética , Femenino , Genes Dominantes , Humanos , Discapacidad Intelectual/fisiopatología , Masculino , Trastornos del Neurodesarrollo/fisiopatología , Linaje , Adulto Joven
10.
Proc Natl Acad Sci U S A ; 114(35): E7341-E7347, 2017 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-28808027

RESUMEN

Non-syndromic craniosynostosis (NSC) is a frequent congenital malformation in which one or more cranial sutures fuse prematurely. Mutations causing rare syndromic craniosynostoses in humans and engineered mouse models commonly increase signaling of the Wnt, bone morphogenetic protein (BMP), or Ras/ERK pathways, converging on shared nuclear targets that promote bone formation. In contrast, the genetics of NSC is largely unexplored. More than 95% of NSC is sporadic, suggesting a role for de novo mutations. Exome sequencing of 291 parent-offspring trios with midline NSC revealed 15 probands with heterozygous damaging de novo mutations in 12 negative regulators of Wnt, BMP, and Ras/ERK signaling (10.9-fold enrichment, P = 2.4 × 10-11). SMAD6 had 4 de novo and 14 transmitted mutations; no other gene had more than 1. Four familial NSC kindreds had mutations in genes previously implicated in syndromic disease. Collectively, these mutations contribute to 10% of probands. Mutations are predominantly loss-of-function, implicating haploinsufficiency as a frequent mechanism. A common risk variant near BMP2 increased the penetrance of SMAD6 mutations and was overtransmitted to patients with de novo mutations in other genes in these pathways, supporting a frequent two-locus pathogenesis. These findings implicate new genes in NSC and demonstrate related pathophysiology of common non-syndromic and rare syndromic craniosynostoses. These findings have implications for diagnosis, risk of recurrence, and risk of adverse neurodevelopmental outcomes. Finally, the use of pathways identified in rare syndromic disease to find genes accounting for non-syndromic cases may prove broadly relevant to understanding other congenital disorders featuring high locus heterogeneity.


Asunto(s)
Craneosinostosis/genética , Craneosinostosis/fisiopatología , Adulto , Animales , Proteínas Morfogenéticas Óseas/antagonistas & inhibidores , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Niño , Preescolar , Suturas Craneales , Craneosinostosis/metabolismo , Exoma/genética , Femenino , Humanos , Sistema de Señalización de MAP Quinasas/genética , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Mutación/genética , Osteogénesis/genética , Penetrancia , Fenotipo , Análisis de Secuencia de ADN/métodos , Transducción de Señal , Proteína smad6/genética , Proteína smad6/fisiología , Secuenciación del Exoma/métodos , Proteínas ras/antagonistas & inhibidores , Proteínas ras/genética , Proteínas ras/metabolismo
11.
Aesthet Surg J ; 40(4): 359-366, 2020 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-30868159

RESUMEN

BACKGROUND: Autologous fat is a safe and effective soft tissue filler. Recent evidence also suggests improved wound healing and immune modulation with fat grafting. OBJECTIVES: The aim of this study was to describe a novel technique utilizing fat grafting during primary open rhinoplasty. We hypothesize a more rapid resolution of bruising and edema. METHODS: Patients who underwent rhinoplasty were reviewed and compared by presence or absence of concurrent fat grafting. Three-dimensional images were analyzed employing Mirror (Vectra, Canfield Scientific, NJ). Ecchymoses were outlined utilizing a magnetic lasso followed by an area measurement. Volumetric edema measurements were also taken and assessed. Edema and ecchymosis were measured at 2 and 6 weeks postoperatively. Statistical significance was defined as P < 0.05. RESULTS: Sixty-two patients were included. Thirty-three patients (53.2%) received autologous fat grafting and 29 (46.8%) did not. Age, gender, surgical approach, and osteotomy distribution were similar between the groups. The fat grafted group showed 7.29 cm2 fewer ecchymoses (P < 0.001) and 0.73 cc less edema (P = 0.68) in the early postoperative interval. Six weeks postoperatively, the fat grafted group showed 1 cc less edema (P = 0.36) with negligible differences in bruising. CONCLUSIONS: Autologous fat grafting is a useful adjunct to rhinoplasty and is associated with significantly fewer ecchymoses in the acute postoperative period.


Asunto(s)
Equimosis , Rinoplastia , Tejido Adiposo , Equimosis/etiología , Edema/etiología , Humanos , Osteotomía , Complicaciones Posoperatorias/epidemiología , Complicaciones Posoperatorias/etiología , Rinoplastia/efectos adversos
12.
Childs Nerv Syst ; 34(6): 1241-1245, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29460062

RESUMEN

INTRODUCTION: Craniosynostosis is the premature fusion of one or more cranial sutures. The cause of non-syndromic craniosynostosis has been attributed to a complex interaction among genetic, epigenetic, and environmental factors. Increased concordance rates in monozygotic twins support a genetic etiology while a concordance rate less than 100% suggests environmental and/or epigenetic influences. Here, we describe the first reported occurrence of all three children in a triplet set with non-syndromic single-suture craniosynostosis. CASE REPORT: The dichorionic triamniotic triplets were the product of a non-consanguineous marriage delivered at 35 weeks' gestation by a 38-year-old mother and consisted of a monochorionic-diamniotic pair (A and B) and a fraternal triplet (C). Three-dimensional computed tomography scans confirmed sagittal synostosis in A and B and metopic synostosis in C. All patients underwent endoscopic strip craniectomy and were discharged on the second postoperative day with helmet orthoses. Comparative genetic hybridization (CGH) and whole-exome sequencing (WES) failed to identify pathogenic copy number variants or gene mutations, respectively. DISCUSSION AND CONCLUSION: The results of the genetic testing suggest the possibility of a rare variant contributing to the risk of midline craniosynostosis shared among the triplets, with potential modifiers at other genetic loci affecting the phenotype. We speculate mutations at loci within non-coding regions not captured by our genetic analysis may have been involved. Moreover, epigenetic factors as well as environmental factors including, but not limited to, in utero head constraint could have contributed to the observed phenotype.


Asunto(s)
Craneosinostosis , Craneosinostosis/cirugía , Craneotomía/métodos , Femenino , Humanos , Masculino , Embarazo , Embarazo Triple
13.
J Craniofac Surg ; 29(1): 49-55, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29049144

RESUMEN

Craniosynostosis is one of the most common craniofacial conditions treated by neurologic and plastic surgeons. In addition to disfigurement, children with craniosynostosis experience significant cognitive dysfunction later in life. Surgery is performed in infancy to correct skull deformity; however, the field is at a crossroads regarding the best approach for correction. Since the cause of brain dysfunction in these patients has remained uncertain, the role and type of surgery might have in attenuating the later-observed cognitive deficits through impact on the brain has been unclear. Recently, however, advances in imaging such as event-related potentials, diffusion tensor imaging, and functional MRI, in conjunction with more robust clinical studies, are providing important insight into the potential etiologies of brain dysfunction in syndromic and nonsyndromic craniosynostosis patients. This review aims to outline the cause(s) of such brain dysfunction including the role extrinsic vault constriction might have on brain development and the current evidence for an intrinsic modular developmental error in brain development. Illuminating the cause of brain dysfunction will identify the role of surgery can play in improving observed functional deficits and thus direct optimal primary and adjuvant treatment.


Asunto(s)
Encéfalo/diagnóstico por imagen , Disfunción Cognitiva/etiología , Craneosinostosis/complicaciones , Craneosinostosis/cirugía , Imagen por Resonancia Magnética , Neuroimagen , Disfunción Cognitiva/diagnóstico por imagen , Humanos
14.
Aesthetic Plast Surg ; 42(5): 1331-1335, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29789868

RESUMEN

PURPOSE: Computer imaging has become increasingly popular for rhinoplasty. Three-dimensional (3D) analysis permits a more comprehensive view from multiple vantage points. However, the predictability and concordance between the simulated and actual result have not been morphometrically studied. The purpose of this study was to aesthetically and quantitatively compare the simulated to actual rhinoplasty result. METHODS: A retrospective review of 3D images (VECTRA, Canfield) for rhinoplasty patients was performed. Images (preop, simulated, and actual) were randomized. A blinded panel of physicians rated the images (1 = poor, 5 = excellent). The image series considered "best" was also recorded. A quantitative assessment of nasolabial angle and tip projection was compared. Paired and two-sample t tests were performed for statistical analysis (P < 0.05 as significant). RESULTS: Forty patients were included. 67.5% of preoperative images were rated as poor (mean = 1.7). The simulation received a mean score of 2.9 (good in 60% of cases). 82.5% of actual cases were rated good to excellent (mean 3.4) (P < 0.001). Overall, the panel significantly preferred the actual postoperative result in 77.5% of cases compared to the simulation in 22.5% of cases (P < 0.001). The actual nasal tip was more projected compared to the simulations for both males and females. There was no significant difference in nasal tip rotation between simulated and postoperative groups. CONCLUSION: 3D simulation is a powerful communication and planning tool in rhinoplasty. In this study, the actual result was deemed more aesthetic than the simulated image. Surgeon experience is important to translate the plan and achieve favorable postoperative results. LEVEL OF EVIDENCE IV: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .


Asunto(s)
Simulación por Computador , Imagenología Tridimensional , Rinoplastia/métodos , Centros Médicos Académicos , Adulto , Estudios de Cohortes , Connecticut , Estética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Cuidados Posoperatorios/métodos , Cuidados Preoperatorios/métodos , Valores de Referencia , Estudios Retrospectivos , Resultado del Tratamiento
15.
Development ; 141(10): 2165-71, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24764077

RESUMEN

Among tetrapods, only urodele salamanders, such as the axolotl Ambystoma mexicanum, can completely regenerate limbs as adults. The mystery of why salamanders, but not other animals, possess this ability has for generations captivated scientists seeking to induce this phenomenon in other vertebrates. Although many recent advances in molecular biology have allowed limb regeneration and tissue repair in the axolotl to be investigated in increasing detail, the molecular toolkit for the study of this process has been limited. Here, we report that the CRISPR-Cas9 RNA-guided nuclease system can efficiently create mutations at targeted sites within the axolotl genome. We identify individual animals treated with RNA-guided nucleases that have mutation frequencies close to 100% at targeted sites. We employ this technique to completely functionally ablate EGFP expression in transgenic animals and recapitulate developmental phenotypes produced by loss of the conserved gene brachyury. Thus, this advance allows a reverse genetic approach in the axolotl and will undoubtedly provide invaluable insight into the mechanisms of salamanders' unique regenerative ability.


Asunto(s)
Ambystoma mexicanum/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Desoxirribonucleasas/metabolismo , Marcación de Gen/métodos , Mutagénesis Sitio-Dirigida/métodos , Ambystoma mexicanum/embriología , Animales , Secuencia de Bases , Desoxirribonucleasas/genética , Embrión no Mamífero , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Mutación INDEL , Datos de Secuencia Molecular , Regeneración/genética , Homología de Secuencia de Ácido Nucleico , ARN Pequeño no Traducido
17.
J Neurosurg Pediatr ; : 1-12, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38875721

RESUMEN

OBJECTIVE: Previous work identified an association between genetics and neurodevelopmental delays in patients with nonsyndromic craniosynostosis. The authors investigated the role of genetic mutations on behavioral outcomes of patients with treated sagittal synostosis. METHODS: Parents of children aged 6-18 years with surgically corrected sagittal synostosis were recruited to complete the Child Behavioral Checklist (overall behavioral problems), Conners 3rd Edition-Parent (attention-deficit/hyperactivity disorder), Social Responsiveness Scale 2nd Edition (autism spectrum disorder [ASD]), and Behavior Rating Inventory of Executive Function 2nd Edition (executive function). Genomic analysis was completed, and patients were identified if they had mutations in high probability of loss of function intolerant (pLI) genes (high pLI vs nonhigh pLI). Genetic burden was assessed relative to controls. Multivariate linear regression determined the association of mutations in high pLI genes with behavioral scores, while controlling for sociodemographic factors, age at surgery, surgery type, and IQ. RESULTS: Sixteen of 45 patients were in the high pLI group. There were no differences between the groups in terms of sociodemographic factors. A greater proportion of children in the high pLI group scored at or above borderline clinical levels for aggression (18.8% vs 0.0%, p = 0.05) and externalizing problems (31.3% vs 3.7%, p = 0.02). Among children in the nonhigh pLI group, older age at surgery was associated with worse scores on the rule-breaking, aggression, and externalizing problems domains and four out of five ASD domains. CONCLUSIONS: Children with treated nonsyndromic sagittal synostosis and mutations in high pLI genes had worse behavioral problems in externalizing behaviors and aggression, whereas older age at surgery was a significant predictor of worse behavioral outcomes in patients without mutations in high pLI genes.

18.
J Neurosurg Pediatr ; 33(1): 59-72, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37890181

RESUMEN

OBJECTIVE: Nonsyndromic craniosynostosis (nsCS), characterized by premature cranial suture fusion, is considered a primary skull disorder in which impact on neurodevelopment, if present, results from the mechanical hindrance of brain growth. Despite surgical repair of the cranial defect, neurocognitive deficits persist in nearly half of affected children. Therefore, the authors performed a functional genomics analysis of nsCS to determine when, where, and in what cell types nsCS-associated genes converge during development. METHODS: The authors integrated whole-exome sequencing data from 291 nsCS proband-parent trios with 29,803 single-cell transcriptomes of the prenatal and postnatal neurocranial complex to inform when, where, and in what cell types nsCS-mutated genes might exert their pathophysiological effects. RESULTS: The authors found that nsCS-mutated genes converged in cranial osteoprogenitors and pial fibroblasts and their transcriptional networks that regulate both skull ossification and cerebral neurogenesis. Nonsyndromic CS-mutated genes also converged in inhibitory neurons and gene coexpression modules that overlapped with autism and other developmental disorders. Ligand-receptor cell-cell communication analysis uncovered crosstalk between suture osteoblasts and neurons via the nsCS-associated BMP, FGF, and noncanonical WNT signaling pathways. CONCLUSIONS: These data implicate a concurrent impact of nsCS-associated de novo mutations on cranial morphogenesis and cortical development via cell- and non-cell-autonomous mechanisms in a developmental nexus of fetal osteoblasts, pial fibroblasts, and neurons. These results suggest that neurodevelopmental outcomes in nsCS patients may be driven more by mutational status than surgical technique.


Asunto(s)
Suturas Craneales , Craneosinostosis , Niño , Embarazo , Femenino , Humanos , Suturas Craneales/metabolismo , Cráneo , Craneosinostosis/cirugía , Neurogénesis , Mutación/genética
19.
J Neurosurg Pediatr ; : 1-6, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38905707

RESUMEN

OBJECTIVE: Occurring once in every 2000 live births, craniosynostosis (CS) is the most frequent cranial birth defect. Although the genetic etiologies of syndromic CS cases are well defined, the genetic cause of most nonsyndromic cases remains unknown. METHODS: The authors analyzed exome or RNA sequencing data from 876 children with nonsyndromic CS, including 291 case-parent trios and 585 additional probands. The authors also utilized the GeneMatcher platform and the Gabriella Miller Kids First genome sequencing project to identify additional CS patients with AXIN1 mutations. RESULTS: The authors describe 11 patients with nonsyndromic CS harboring rare, damaging mutations in AXIN1, an inhibitor of Wnt signaling. AXIN1 regulates signaling upstream of key mediators of osteoblast differentiation. Three of the 6 mutations identified in trios occurred de novo in the proband, while 3 were transmitted from unaffected parents. Patients with nonsyndromic CS were highly enriched for mutations in AXIN1 compared to both expectation (p = 0.0008) and exome sequencing data from > 76,000 healthy controls (p = 2.3 × 10-6), surpassing the thresholds for genome-wide significance. CONCLUSIONS: These findings describe the first phenotype associated with mutations in AXIN1, with mutations identified in approximately 1% of nonsyndromic CS cases. The results strengthen the existing link between Wnt signaling and maintenance of cranial suture patency and have implications for genetic testing in families with CS.

20.
Cancer Sci ; 104(7): 844-55, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23578138

RESUMEN

Platelet-derived serotonin (5-HT) is involved in liver regeneration. The liver is also the metastatic site for malignant enterochromaffin (EC) cell "carcinoid" (neuroendocrine) neoplasms, the principal cellular source of 5-HT. We hypothesized that 5-HT produced by metastatic EC cells played a role in the hepatic tumor-microenvironment principally via 5-HT7 receptor-mediated activation of hepatocyte IGF-1 synthesis and secretion. Using isolated rat hepatocytes, we evaluated 5-HT7 receptor expression (using PCR, sequencing and western blot). ELISA, cell transfection and western blots delineated 5-HT-mediated signaling pathways (pCREB, AKT and ERK). IGF-1 synthesis/secretion was evaluated using QPCR and ELISA. IGF-1 was tested on small intestinal neuroendocrine neoplasm proliferation, while IGF-1 production and 5-HT7 expression were examined in an in vivo SCID metastasis model. Our results demonstrated evidence for a functional 5-HT7 receptor. 5-HT activated cAMP/PKA activity, pCREB (130-205%, P < 0.05) and pERK/pAKT (1.2-1.75, P < 0.05). Signaling was reversed by the 5-HT7 receptor antagonist SB269970. IGF-1 significantly stimulated proliferation of two small intestinal neuroendocrine neoplasm cell lines (EC50: 7-70 pg/mL) and could be reversed by the small molecule inhibitor BMS-754807. IGF-1 and 5-HT were elevated (40-300×) in peri-tumoral hepatic tissue in nude mice, while 5-HT7 was increased fourfold compared to sham-operated animals. We conclude that hepatocytes express a cAMP-coupled 5-HT7 receptor, which, at elevated 5-HT concentrations that occur in liver metastases, signals via CREB/AKT and is linked to IGF-1 synthesis and secretion. Because IGF-1 regulates NEN proliferation, identification of a role for 5-HT7 in the hepatic metastatic tumor microenvironment suggests the potential for novel therapeutic strategies for amine-producing mid-gut tumors.


Asunto(s)
Hepatocitos/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Neoplasias Intestinales/metabolismo , Intestino Delgado/metabolismo , Tumores Neuroendocrinos/metabolismo , Receptores de Serotonina/metabolismo , Serotonina/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular , AMP Cíclico/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Hepatocitos/patología , Neoplasias Intestinales/patología , Intestino Delgado/patología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Sistema de Señalización de MAP Quinasas , Ratones , Ratones SCID , Tumores Neuroendocrinos/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Transducción de Señal/fisiología , Microambiente Tumoral/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA