Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Nature ; 594(7864): 535-540, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34163056

RESUMEN

Night-migratory songbirds are remarkably proficient navigators1. Flying alone and often over great distances, they use various directional cues including, crucially, a light-dependent magnetic compass2,3. The mechanism of this compass has been suggested to rely on the quantum spin dynamics of photoinduced radical pairs in cryptochrome flavoproteins located in the retinas of the birds4-7. Here we show that the photochemistry of cryptochrome 4 (CRY4) from the night-migratory European robin (Erithacus rubecula) is magnetically sensitive in vitro, and more so than CRY4 from two non-migratory bird species, chicken (Gallus gallus) and pigeon (Columba livia). Site-specific mutations of ErCRY4 reveal the roles of four successive flavin-tryptophan radical pairs in generating magnetic field effects and in stabilizing potential signalling states in a way that could enable sensing and signalling functions to be independently optimized in night-migratory birds.


Asunto(s)
Migración Animal , Criptocromos/genética , Campos Magnéticos , Pájaros Cantores , Animales , Proteínas Aviares/genética , Pollos , Columbidae , Retina
2.
J Am Chem Soc ; 146(31): 21476-21489, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39042706

RESUMEN

The dynamics of electron and spin transfer in the radical cation and photogenerated triplet states of a tetramethylbiphenyl-linked zinc-porphyrin dimer were investigated, so as to test the relevant parameters for the design of a single-molecule spin valve and the creation of a novel platform for the photogeneration of high-multiplicity spin states. We used a combination of multiple techniques, including variable-temperature continuous wave EPR, pulsed proton electron-nuclear double resonance (ENDOR), transient EPR, and optical spectroscopy. The conclusions are further supported by density functional theory (DFT) calculations and comparison to reference compounds. The low-temperature cw-EPR and room-temperature near-IR spectra of the dimer monocation demonstrate that the radical cation is spatially localized on one side of the dimer at any point in time, not coherently delocalized over both porphyrin units. The EPR spectra at 298 K reveal rapid hopping of the radical spin density between both sites of the dimer via reversible intramolecular electron transfer. The hyperfine interactions are modulated by electron transfer and can be quantified using ENDOR spectroscopy. This allowed simulation of the variable-temperature cw-EPR spectra with a two-site exchange model and provided information on the temperature-dependence of the electron transfer rate. The electron transfer rates range from about 10.0 MHz at 200 K to about 53.9 MHz at 298 K. The activation enthalpies Δ‡H of the electron transfer were determined as Δ‡H = 9.55 kJ mol-1 and Δ‡H = 5.67 kJ mol-1 in a 1:1:1 solvent mixture of CD2Cl2/toluene-d8/THF-d8 and in 2-methyltetrahydrofuran, respectively, consistent with a Robin-Day class II mixed valence compound. These results indicate that the interporphyrin electronic coupling in a tetramethylbiphenyl-linked porphyrin dimer is suitable for the backbone of a single-molecule spin valve. Investigation of the spin density distribution of the photogenerated triplet state of the Zn-porphyrin dimer reveals localization of the triplet spin density on a nanosecond time scale on one-half of the dimer at 20 K in 2-methyltetrahydrofuran and at 250 K in a polyvinylcarbazole film. This establishes the porphyrin dimer as a molecular platform for the formation of a localized, photogenerated triplet state on one porphyrin unit that is coupled to a second redox-active, ground-state porphyrin unit, which can be explored for the formation of high-multiplicity spin states.

3.
Phys Chem Chem Phys ; 26(3): 2589-2602, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38170870

RESUMEN

We recently reported a new technique, light-induced triplet-triplet electron resonance (LITTER) spectroscopy, which allows quantification of the dipolar interaction between the photogenerated triplet states of two chromophores. Here we carry out a systematic LITTER study, considering orientation selection by the detection pulses, of a series of bis-porphyrin model peptides with different porphyrin-porphyrin distances and relative orientations. Orientation-dependent analysis of the dipolar datasets yields conformational information of the molecules in frozen solution which is in good agreement with density functional theory predictions. Additionally, a fast partial orientational-averaging treatment produces distance distributions with minimized orientational artefacts. Finally, by direct comparison of LITTER data to double electron-electron resonance (DEER) measured on a system with Cu(II) coordinated into the porphyrins, we demonstrate the advantages of the LITTER technique over the standard DEER methodology. This is due to the remarkable spectroscopic properties of the photogenerated porphyrin triplet state. This work sets the basis for the use of LITTER in structural investigations of unmodified complex biological macromolecules, which could be combined with Förster resonance energy transfer and microscopy inside cells.

4.
J Am Chem Soc ; 145(42): 22859-22865, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37839071

RESUMEN

To carry out reliable and comprehensive structural investigations, the exploitation of different complementary techniques is required. Here, we report that dual triplet-spin/fluorescent labels enable the first parallel distance measurements by electron spin resonance (ESR) and Förster resonance energy transfer (FRET) on exactly the same molecules with orthogonal chromophores, allowing for direct comparison. An improved light-induced triplet-triplet electron resonance method with 2-color excitation is used, improving the signal-to-noise ratio of the data and yielding a distance distribution that provides greater insight than the single distance resulting from FRET.

5.
J Chem Phys ; 159(10)2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37694754

RESUMEN

Cryptochrome 4a (Cry4a) has been proposed as the sensor at the heart of the magnetic compass in migratory songbirds. Blue-light excitation of this protein produces magnetically sensitive flavin-tryptophan radical pairs whose properties suggest that Cry4a could indeed be suitable as a magnetoreceptor. Here, we use cavity ring-down spectroscopy to measure magnetic field effects on the kinetics of these radical pairs in modified Cry4a proteins from the migratory European robin and from nonmigratory pigeon and chicken. B1/2, a parameter that characterizes the magnetic field-dependence of the reactions, was found to be larger than expected on the basis of hyperfine interactions and to increase with the delay between pump and probe laser pulses. Semiclassical spin dynamics simulations show that this behavior is consistent with a singlet-triplet dephasing (STD) relaxation mechanism. Analysis of the experimental data gives dephasing rate constants, rSTD, in the range 3-6 × 107 s-1. A simple "toy" model due to Maeda, Miura, and Arai [Mol. Phys. 104, 1779-1788 (2006)] is used to shed light on the origin of the time-dependence and the nature of the STD mechanism. Under the conditions of the experiments, STD results in an exponential approach to spin equilibrium at a rate considerably slower than rSTD. We attribute the loss of singlet-triplet coherence to electron hopping between the second and third tryptophans of the electron transfer chain and comment on whether this process could explain differences in the magnetic sensitivity of robin, chicken, and pigeon Cry4a's.


Asunto(s)
Proteínas Aviares , Pollos , Criptocromos , Animales , Pollos/fisiología , Criptocromos/química , Criptocromos/fisiología , Campos Magnéticos , Migración Animal
6.
Molecules ; 27(21)2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36364348

RESUMEN

We present a new photoswitchable spin label for light-induced pulsed electron paramagnetic resonance dipolar spectroscopy (LiPDS), the photoexcited triplet state of erythrosin B (EB), which is ideal for biological applications. With this label, we perform an in-depth study of the orientational effects in dipolar traces acquired using the refocused laser-induced magnetic dipole technique to obtain information on the distance and relative orientation between the EB and nitroxide labels in a rigid model peptide, in good agreement with density functional theory predictions. Additionally, we show that these orientational effects can be averaged to enable an orientation-independent analysis to determine the distance distribution. Furthermore, we demonstrate the feasibility of these experiments above liquid nitrogen temperatures, removing the need for expensive liquid helium or cryogen-free cryostats. The variety of choices in photoswitchable spin labels and the affordability of the experiments are critical for LiPDS to become a widespread methodology in structural biology.


Asunto(s)
Eritrosina , Espectroscopía de Resonancia por Spin del Electrón/métodos , Marcadores de Spin , Temperatura
7.
J Am Chem Soc ; 143(43): 17875-17890, 2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34664948

RESUMEN

Distance distribution information obtained by pulsed dipolar EPR spectroscopy provides an important contribution to many studies in structural biology. Increasingly, such information is used in integrative structural modeling, where it delivers unique restraints on the width of conformational ensembles. In order to ensure reliability of the structural models and of biological conclusions, we herein define quality standards for sample preparation and characterization, for measurements of distributed dipole-dipole couplings between paramagnetic labels, for conversion of the primary time-domain data into distance distributions, for interpreting these distributions, and for reporting results. These guidelines are substantiated by a multi-laboratory benchmark study and by analysis of data sets with known distance distribution ground truth. The study and the guidelines focus on proteins labeled with nitroxides and on double electron-electron resonance (DEER aka PELDOR) measurements and provide suggestions on how to proceed analogously in other cases.


Asunto(s)
Óxidos N-Cíclicos/química , Espectroscopía de Resonancia por Spin del Electrón/normas , Proteínas/química , Marcadores de Spin , Benchmarking , Espectroscopía de Resonancia por Spin del Electrón/métodos , Reproducibilidad de los Resultados
8.
J Phys Chem A ; 124(29): 6068-6075, 2020 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-32585095

RESUMEN

Identifying and characterizing systems that generate well-defined states with large electron spin polarization is of high interest for applications in molecular spintronics, high-energy physics, and magnetic resonance spectroscopy. The generation of electron spin polarization on free-radical substituents tethered to pentacene derivatives has recently gained a great deal of interest for its applications in molecular electronics. After photoexcitation of the chromophore, pentacene-radical derivatives can rapidly form spin-polarized triplet excited states through enhanced intersystem crossing. Under the right conditions, the triplet spin polarization, arising from mS-selective intersystem crossing rates, can be transferred to the tethered stable radical. The efficiency of this spin polarization transfer depends on many factors: local magnetic and electric fields, excited-state energetics, molecular geometry, and spin-spin coupling. Here, we present transient electron paramagnetic resonance (EPR) measurements on three pentacene derivatives tethered to Finland trityl, BDPA, or TEMPO radicals to explore the influence of the nature of the radical on the spin polarization transfer. We observe efficient polarization transfer between the pentacene excited triplet and the trityl radical but do not observe the same for the BDPA and TEMPO derivatives. The polarization transfer behavior in the pentacene-trityl system is also investigated in different glassy matrices and is found to depend markedly on the solvent used. The EPR results are rationalized with the help of femtosecond and nanosecond transient absorption measurements, yielding complementary information on the excited-state dynamics of the three pentacene derivatives. Notably, we observe a 2 orders of magnitude difference in the time scale of triplet formation between the pentacene-trityl system and the pentacene systems tethered with the BDPA and TEMPO radicals.

9.
Chemphyschem ; 20(7): 931-935, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30817078

RESUMEN

Light-induced pulsed EPR dipolar spectroscopic methods allow the determination of nanometer distances between paramagnetic sites. Here we employ orthogonal spin labels, a chromophore triplet state and a stable radical, to carry out distance measurements in singly nitroxide-labeled human neuroglobin. We demonstrate that Zn-substitution of neuroglobin, to populate the Zn(II) protoporphyrin IX triplet state, makes it possible to perform light-induced pulsed dipolar experiments on hemeproteins, extending the use of light-induced dipolar spectroscopy to this large class of metalloproteins. The versatility of the method is ensured by the employment of different techniques: relaxation-induced dipolar modulation enhancement (RIDME) is applied for the first time to the photoexcited triplet state. In addition, an alternative pulse scheme for laser-induced magnetic dipole (LaserIMD) spectroscopy, based on the refocused-echo detection sequence, is proposed for accurate zero-time determination and reliable distance analysis.


Asunto(s)
Neuroglobina/química , Óxidos N-Cíclicos/química , Cisteína/química , Espectroscopía de Resonancia por Spin del Electrón , Humanos , Luz , Mesilatos/química , Estructura Molecular , Mutación , Neuroglobina/genética , Protoporfirinas/química , Protoporfirinas/efectos de la radiación , Marcadores de Spin
10.
Phys Chem Chem Phys ; 21(22): 11676-11688, 2019 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-31134254

RESUMEN

The pulse EPR method ELDOR-detected NMR (EDNMR) is applied to two Cu(ii)-porphyrin dimers that are suitable building blocks for molecular wires. One of the dimers is meso-meso singly linked, the other one is ß, meso, ß-fused. We show experimentally and theoretically that EDNMR spectra contain information about the electron-electron couplings. The spectra of the singly linked dimer are consistent with a perpendicular arrangement of the porphyrin planes and negligible exchange coupling. In addition, the resolution is good enough to distinguish 63Cu and 65Cu in frozen glassy solution and to resolve a metal-ion nuclear quadrupole coupling of 32 MHz. In the case of the fused dimer, we observe so far unreported signal enhancements, or anti-holes, in the EDNMR spectra. These are readily explained in a generalized framework based on [Cox et al., J. Magn. Reson., 2017, 280, 63-78], if an effective spin of S = 1 is assumed, in accordance with SQUID measurements. The positions of the anti-holes encode a zero-field splitting with |D| = 240 MHz, which is about twice as large as expected from the point-dipole approximation. These findings demonstrate the previously unrecognized applicability and versatility of the EDNMR technique in the quantitative study of complex paramagnetic compounds.

11.
J Am Chem Soc ; 140(28): 8705-8713, 2018 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-29940116

RESUMEN

It is a remarkable fact that ∼50 µT magnetic fields can alter the rates and yields of certain free-radical reactions and that such effects might be the basis of the light-dependent ability of migratory birds to sense the direction of the Earth's magnetic field. The most likely sensory molecule at the heart of this chemical compass is cryptochrome, a flavin-containing protein that undergoes intramolecular, blue-light-induced electron transfer to produce magnetically sensitive radical pairs. To learn more about the factors that control the magnetic sensitivity of cryptochromes, we have used a set of de novo designed protein maquettes that self-assemble as four-α-helical proteins incorporating a single tryptophan residue as an electron donor placed approximately 0.6, 1.1, or 1.7 nm away from a covalently attached riboflavin as chromophore and electron acceptor. Using a specifically developed form of cavity ring-down spectroscopy, we have characterized the photochemistry of these designed flavoprotein maquettes to determine the identities and kinetics of the transient radicals responsible for the magnetic field effects. Given the gross structural and dynamic differences from the natural proteins, it is remarkable that the maquettes show magnetic field effects that are so similar to those observed for cryptochromes.


Asunto(s)
Proteínas Aviares/metabolismo , Aves/metabolismo , Criptocromos/metabolismo , Radicales Libres/metabolismo , Animales , Proteínas Aviares/química , Criptocromos/química , Transporte de Electrón , Radicales Libres/química , Luz , Campos Magnéticos , Modelos Moleculares , Procesos Fotoquímicos , Conformación Proteica en Hélice alfa
12.
J Am Chem Soc ; 140(7): 2514-2527, 2018 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-29266939

RESUMEN

Cytochrome P450 (CYP) monooxygenases catalyze the oxidation of chemically inert carbon-hydrogen bonds in diverse endogenous and exogenous organic compounds by atmospheric oxygen. This C-H bond oxy-functionalization activity has huge potential in biotechnological applications. Class I CYPs receive the two electrons required for oxygen activation from NAD(P)H via a ferredoxin reductase and ferredoxin. The interaction of Class I CYPs with their cognate ferredoxin is specific. In order to reconstitute the activity of diverse CYPs, structural characterization of CYP-ferredoxin complexes is necessary, but little structural information is available. Here we report a structural model of such a complex (CYP199A2-HaPux) in frozen solution derived from distance and orientation restraints gathered by the EPR technique of orientation-selective double electron-electron resonance (os-DEER). The long-lived oscillations in the os-DEER spectra were well modeled by a single orientation of the CYP199A2-HaPux complex. The structure is different from the two known Class I CYP-Fdx structures: CYP11A1-Adx and CYP101A1-Pdx. At the protein interface, HaPux residues in the [Fe2S2] cluster-binding loop and the α3 helix and the C-terminus residue interact with CYP199A2 residues in the proximal loop and the C helix. These residue contacts are consistent with biochemical data on CYP199A2-ferredoxin binding and electron transfer. Electron-tunneling calculations indicate an efficient electron-transfer pathway from the [Fe2S2] cluster to the heme. This new structural model of a CYP-Fdx complex provides the basis for tailoring CYP enzymes for which the cognate ferredoxin is not known, to accept electrons from HaPux and display monooxygenase activity.

13.
J Chem Phys ; 149(3): 034103, 2018 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-30037236

RESUMEN

Radical pair recombination reactions are known to be sensitive to the application of both low and high magnetic fields. The application of a weak magnetic field reduces the singlet yield of a singlet-born radical pair, whereas the application of a strong magnetic field increases the singlet yield. The high field effect arises from energy conservation: when the magnetic field is stronger than the sum of the hyperfine fields in the two radicals, S → T± transitions become energetically forbidden, thereby reducing the number of pathways for singlet to triplet interconversion. The low field effect arises from symmetry breaking: the application of a weak magnetic field lifts degeneracies among the zero field eigenstates and increases the number of pathways for singlet to triplet interconversion. However, the details of this effect are more subtle and have not previously been properly explained. Here we present a complete analysis of the low field effect in a radical pair containing a single proton and in a radical pair in which one of the radicals contains a large number of hyperfine-coupled nuclear spins. We find that the new transitions that occur when the field is switched on are between S and T0 in both cases, and not between S and T± as has previously been claimed. We then illustrate this result by using it in conjunction with semiclassical spin dynamics simulations to account for the observation of a biphasic-triphasic-biphasic transition with increasing magnetic field strength in the magnetic field effect on the time-dependent survival probability of a photoexcited carotenoid-porphyrin-fullerene radical pair.

14.
J Am Chem Soc ; 139(34): 12003-12008, 2017 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-28809559

RESUMEN

The extent of triplet state delocalization is investigated in rigid linear zinc porphyrin oligomers as a function of interporphyrin bonding characteristics, specifically in meso-meso singly linked and ß,meso,ß fused structures, using electron paramagnetic resonance techniques. The results are compared with those of earlier measurements on porphyrin oligomers with alkyne linkers exhibiting different preferred conformations. It is shown that dihedral angles near 90° between the porphyrin planes in directly meso-to-meso linked porphyrin oligomers lead to localization of the photoexcited triplet state on a single porphyrin unit, whereas previous work demonstrated even delocalization over two units in meso-to-meso ethyne or butadiyne-bridged oligomers, where the preferred dihedral angles amount to roughly 30° and 0°, respectively. The triplet states of fused porphyrin oligomers (i.e., porphyrin tapes) exhibit extended conjugation and even delocalization over more than two porphyrin macrocycles, in contrast to meso-to-meso ethyne or butadiyne-bridged oligomers, where the spin density distribution in molecules composed of more than two porphyrin units is not evenly spread across the oligomer chain.

15.
J Am Chem Soc ; 139(15): 5301-5304, 2017 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-28353344

RESUMEN

The influence of electronic symmetry on triplet state delocalization in linear zinc porphyrin oligomers is explored by electron paramagnetic resonance techniques. Using a combination of transient continuous wave and pulse electron nuclear double resonance spectroscopies, it is demonstrated experimentally that complete triplet state delocalization requires the chemical equivalence of all porphyrin units. These results are supported by density functional theory calculations, showing uneven delocalization in a porphyrin dimer in which a terminal ethynyl group renders the two porphyrin units inequivalent. When the conjugation length of the molecule is further increased upon addition of a second terminal ethynyl group that restores the symmetry of the system, the triplet state is again found to be completely delocalized. The observations suggest that electronic symmetry is of greater importance for triplet state delocalization than other frequently invoked factors such as conformational rigidity or fundamental length-scale limitations.

16.
J Am Chem Soc ; 139(30): 10461-10471, 2017 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-28678489

RESUMEN

The radical cations of a family of π-conjugated porphyrin arrays have been investigated: linear chains of N = 1-6 porphyrins, a 6-porphyrin nanoring and a 12-porphyrin nanotube. The radical cations were generated in solution by chemical and electrochemical oxidation, and probed by vis-NIR-IR and EPR spectroscopies. The cations exhibit strong NIR bands at ∼1000 nm and 2000-5000 nm, which shift to longer wavelength with increasing oligomer length. Analysis of the NIR and IR spectra indicates that the polaron is delocalized over 2-3 porphyrin units in the linear oligomers. Some of the IR vibrational bands are strongly intensified on oxidation, and Fano-type antiresonances are observed when activated vibrations overlap with electronic transitions. The solution-phase EPR spectra of the radical cations have Gaussian lineshapes with linewidths proportional to N-0.5, demonstrating that at room temperature the spin hops rapidly over the whole chain on the time scale of the hyperfine coupling (ca. 100 ns). Direct measurement of the hyperfine couplings through electron-nuclear double resonance (ENDOR) in frozen solution (80 K) indicates distribution of the spin over 2-3 porphyrin units for all the oligomers, except the 12-porphyrin nanotube, in which the spin is spread over about 4-6 porphyrins. These experimental studies of linear and cyclic cations give a consistent picture, which is supported by DFT calculations and multiparabolic modeling with a reorganization energy of 1400-2000 cm-1 and coupling of 2000 cm-1 for charge transfer between neighboring sites, placing the system in the Robin-Day class III.

17.
Phys Chem Chem Phys ; 19(24): 16057-16061, 2017 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-28597882

RESUMEN

Linear π-conjugated porphyrin oligomers are of significant current interest due to their potential applications as molecular wires. In this study we investigate electronic communication in linear butadiyne-linked copper porphyrin oligomers by electron paramagnetic resonance (EPR) spectroscopy via measurement of the exchange interaction, J, between the copper(ii) centers. The contributions of dipolar and exchange interactions to the frozen solution continuous wave (cw) EPR spectra of the compounds with two or more copper porphyrin units were explicitly accounted for in numerical simulations using a spin Hamiltonian approach. It is demonstrated that a complete numerical simulation of the powder spectrum of a large spin system with a Hamiltonian dimension of 26 244 and beyond can be made feasible by simulating the spectra in the time domain. The exchange coupling in the Cu2 dimer (CuCu distance 1.35 nm) is of the order of tens of MHz (H = -2JS1·S2) and is strongly modulated by low-energy molecular motions such as twisting of the molecule.

18.
J Am Chem Soc ; 138(51): 16584-16587, 2016 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-27958724

RESUMEN

Migratory birds use the Earth's magnetic field as a source of navigational information. This light-dependent magnetic compass is thought to be mediated by cryptochrome proteins in the retina. Upon light activation, electron transfer between the flavin adenine dinucleotide cofactor and tryptophan residues leads to the formation of a spin-correlated radical pair, whose subsequent fate is sensitive to external magnetic fields. To learn more about the functional requirements of this complex chemical compass, we have created a family of simplified, adaptable proteins-maquettes-that contain a single tryptophan residue at different distances from a covalently bound flavin. Despite the complete absence of structural resemblance to the native cryptochrome fold or sequence, the maquettes exhibit a strong magnetic field effect that rivals those observed in the natural proteins in vitro. These novel maquette designs offer unprecedented flexibility to explore the basic requirements for magnetic sensing in a protein environment.


Asunto(s)
Flavoproteínas/genética , Flavoproteínas/metabolismo , Campos Magnéticos , Ingeniería de Proteínas , Flavoproteínas/química , Conformación Proteica en Hélice alfa
19.
Phys Chem Chem Phys ; 18(7): 5275-80, 2016 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-26814427

RESUMEN

The optoelectronic properties of conjugated porphyrin arrays render them excellent candidates for use in a variety of molecular electronic devices. Understanding the factors controlling the electron delocalization in these systems is important for further developments in this field. Here, we use transient EPR and ENDOR (Electron Nuclear Double Resonance) to study the extent of electronic delocalization in the photoexcited triplet states of a series of butadiyne-linked porphyrin oligomers. We are able to distinguish between planar and twisted arrangements of adjacent porphyrin units, as the different conformations are preferentially excited at different wavelengths in the visible range. We show that the extent of triplet state delocalization is modulated by the torsional angle between the porphyrins and therefore by the excitation wavelength. These results have implications for the design of supramolecular systems with fine-tuned excitonic interactions and for the control of charge transport.

20.
Phys Chem Chem Phys ; 18(35): 24171-5, 2016 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-27533592

RESUMEN

Introducing bridging ligands such as DABCO to solutions of linear zinc porphyrin oligomers has previously been shown to lead to the formation of ladder-type assemblies in which the single porphyrin units in each strand adopt a predominantly co-planar conformation. Here, we employ transient Electron Paramagnetic Resonance (EPR) to study photogenerated triplet states of these complexes in frozen solution with a particular focus on the extent of spin delocalisation. We make use of two different techniques: (i) the zero-field splitting parameters D and E are determined using transient continuous wave (cw) EPR spectroscopy and (ii) the hyperfine coupling constants, which directly reveal the extent of spin delocalisation, are quantified by orientation-selective proton Electron Nuclear DOuble Resonance (ENDOR) spectroscopy. It is found that ladder formation does not encourage triplet state delocalisation either across the bridging ligand DABCO or along the individual porphyrin strands despite their co-planar conformation, which was previously shown to allow increased electronic delocalisation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA