Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Diabetes ; 73(9): 1537-1550, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38869630

RESUMEN

Genetic studies of nontraditional glycemic biomarkers, glycated albumin and fructosamine, can shed light on unknown aspects of type 2 diabetes genetics and biology. We performed a multiphenotype genome-wide association study of glycated albumin and fructosamine from 7,395 White and 2,016 Black participants in the Atherosclerosis Risk in Communities (ARIC) study on common variants from genotyped/imputed data. We discovered two genome-wide significant loci, one mapping to a known type 2 diabetes gene (ARAP1/STARD10) and another mapping to a novel region (UGT1A complex of genes), using multiomics gene-mapping strategies in diabetes-relevant tissues. We identified additional loci that were ancestry- and sex-specific (e.g., PRKCA in African ancestry, FCGRT in European ancestry, TEX29 in males). Further, we implemented multiphenotype gene-burden tests on whole-exome sequence data from 6,590 White and 2,309 Black ARIC participants. Ten variant sets annotated to genes across different variant aggregation strategies were exome-wide significant only in multiancestry analysis, of which CD1D, EGFL7/AGPAT2, and MIR126 had notable enrichment of rare predicted loss of function variants in African ancestry despite smaller sample sizes. Overall, 8 of 14 discovered loci and genes were implicated to influence these biomarkers via glycemic pathways, and most of them were not previously implicated in studies of type 2 diabetes. This study illustrates improved locus discovery and potential effector gene discovery by leveraging joint patterns of related biomarkers across the entire allele frequency spectrum in multiancestry analysis. Future investigation of the loci and genes potentially acting through glycemic pathways may help us better understand the risk of developing type 2 diabetes.


Asunto(s)
Biomarcadores , Diabetes Mellitus Tipo 2 , Estudio de Asociación del Genoma Completo , Humanos , Diabetes Mellitus Tipo 2/genética , Masculino , Femenino , Biomarcadores/sangre , Fructosamina/sangre , Población Blanca/genética , Albúmina Sérica Glicada , Polimorfismo de Nucleótido Simple , Persona de Mediana Edad , Variación Genética/genética , Análisis Multivariante , Albúmina Sérica/genética , Albúmina Sérica/metabolismo
2.
medRxiv ; 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39148842

RESUMEN

IMPORTANCE: Olfactory dysfunction is among the earliest signs of many age-related neurodegenerative diseases and has been associated with increased mortality in older adults; however, its genetic basis remains largely unknown. OBJECTIVE: To identify the genetic loci associated with olfactory dysfunction in the general population. DESIGN SETTING AND PARTIICIPANTS: This genome-wide association study meta-analysis (GWMA) included participants of European ancestry (N = 22,730) enrolled in four different large population-based studies, followed by a multi-ancestry GWMA including participants of African ancestry (N = 1,030). The data analysis was performed from March 2023 through June 2024. EXPOSURES: Genome-wide single nucleotide polymorphisms. MAIN OUTCOMES AND MEASURES: Olfactory dysfunction was the outcome and assessed using a 12-item smell identification test. RESULTS: GWMA revealed a novel genome-wide significant locus (tagged by rs11228623 at 11q12) associated with olfactory dysfunction. Gene-based analysis revealed a high enrichment for olfactory receptor genes in this region. Phenome-wide association studies demonstrated associations between genetic variants related to olfactory dysfunction and blood cell counts, kidney function, skeletal muscle mass, cholesterol levels and cardiovascular disease. Using individual-level data, we also confirmed and quantified the strength of these associations on a phenotypic level. Moreover, employing two-sample Mendelian Randomization analyses, we found evidence for causal associations between olfactory dysfunction and these phenotypes. CONCLUSIONS: These findings provide novel insights into the genetic architecture of the sense of smell and highlight its importance for many aspects of human health.

3.
Nat Commun ; 15(1): 528, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38225249

RESUMEN

Heart failure (HF) causes substantial morbidity and mortality but its pathobiology is incompletely understood. The proteome is a promising intermediate phenotype for discovery of novel mechanisms. We measured 4877 plasma proteins in 13,900 HF-free individuals across three analysis sets with diverse age, geography, and HF ascertainment to identify circulating proteins and protein networks associated with HF development. Parallel analyses in Atherosclerosis Risk in Communities study participants in mid-life and late-life and in Trøndelag Health Study participants identified 37 proteins consistently associated with incident HF independent of traditional risk factors. Mendelian randomization supported causal effects of 10 on HF, HF risk factors, or left ventricular size and function, including matricellular (e.g. SPON1, MFAP4), senescence-associated (FSTL3, IGFBP7), and inflammatory (SVEP1, CCL15, ITIH3) proteins. Protein co-regulation network analyses identified 5 modules associated with HF risk, two of which were influenced by genetic variants that implicated trans hotspots within the VTN and CFH genes.


Asunto(s)
Aterosclerosis , Insuficiencia Cardíaca , Humanos , Proteómica , Factores de Riesgo , Fenotipo , Proteínas Portadoras/genética , Glicoproteínas/genética , Proteínas de la Matriz Extracelular/genética
4.
Nat Commun ; 15(1): 586, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38233393

RESUMEN

X-chromosomal genetic variants are understudied but can yield valuable insights into sexually dimorphic human traits and diseases. We performed a sex-stratified cross-ancestry X-chromosome-wide association meta-analysis of seven kidney-related traits (n = 908,697), identifying 23 loci genome-wide significantly associated with two of the traits: 7 for uric acid and 16 for estimated glomerular filtration rate (eGFR), including four novel eGFR loci containing the functionally plausible prioritized genes ACSL4, CLDN2, TSPAN6 and the female-specific DRP2. Further, we identified five novel sex-interactions, comprising male-specific effects at FAM9B and AR/EDA2R, and three sex-differential findings with larger genetic effect sizes in males at DCAF12L1 and MST4 and larger effect sizes in females at HPRT1. All prioritized genes in loci showing significant sex-interactions were located next to androgen response elements (ARE). Five ARE genes showed sex-differential expressions. This study contributes new insights into sex-dimorphisms of kidney traits along with new prioritized gene targets for further molecular research.


Asunto(s)
Andrógenos , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Femenino , Andrógenos/genética , Riñón , Cromosomas Humanos X/genética , Elementos de Respuesta , Polimorfismo de Nucleótido Simple , Predisposición Genética a la Enfermedad , Tetraspaninas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA