Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
J Biol Chem ; 299(5): 104639, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36965614

RESUMEN

Luciferase-based gene reporters generating bioluminescence signals are important tools for biomedical research. Amongst the luciferases, flavin-dependent enzymes use the most economical chemicals. However, their applications in mammalian cells are limited due to their low signals compared to other systems. Here, we constructed Flavin Luciferase from Vibrio campbellii (Vc) for Mammalian Cell Expression (FLUXVc) by engineering luciferase from V. campbellii (the most thermostable bacterial luciferase reported to date) and optimizing its expression and reporter assays in mammalian cells which can improve the bioluminescence light output by >400-fold as compared to the nonengineered version. We found that the FLUXVc reporter gene can be overexpressed in various cell lines and showed outstanding signal-to-background in HepG2 cells, significantly higher than that of firefly luciferase (Fluc). The combined use of FLUXVc/Fluc as target/control vectors gave the most stable signals, better than the standard set of Fluc(target)/Rluc(control). We also demonstrated that FLUXVc can be used for testing inhibitors of the NF-κB signaling pathway. Collectively, our results provide an optimized method for using the more economical flavin-dependent luciferase in mammalian cells.


Asunto(s)
Biotecnología , Genes Reporteros , Luciferasas , Mediciones Luminiscentes , Animales , Genes Reporteros/genética , Luciferasas/genética , Luciferasas/metabolismo , Mediciones Luminiscentes/normas , Mamíferos/metabolismo , Vibrio/enzimología , Proteínas Recombinantes de Fusión/metabolismo , Vectores Genéticos , Biotecnología/métodos
2.
Cell Tissue Res ; 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38592496

RESUMEN

Neuropeptide F is a key hormone that controls feeding in invertebrates, including decapod crustaceans. We investigated the differential expression of Macrobrachium rosenbergii neuropeptide F (MrNPF) in the digestive organs of female prawns, M. rosenbergii, during the ovarian cycle. By using RT-qPCR, the expression of MrNPF mRNA in the esophagus (ESO), cardia (CD), and pylorus (PY) of the foregut (FG) gradually increased from stage II and peaked at stage III. In the midgut (MG), hindgut (HG), and hepatopancreas (HP), MrNPF mRNA increased from stage I, reaching a maximal level at stage II, and declined by about half at stages III and IV (P < 0.05). In the ESO, CD, and PY, strong MrNPF-immunoreactivities were seen in the epithelium, muscle, and lamina propria. Intense MrNPF-ir was found in the MG cells and the muscular layer. In the HG, MrNPF-ir was detected in the epithelium of the villi and gland regions, while MrNPF-ir was also more intense in the F-, R-, and B-cells in the HP. However, we found little colocalization between the MrNPF and PGP9.5/ChAT in digestive tissues, implying that most of the positive cells might not be neurons but could be digestive tract-associated endocrine cells that produce and secrete MrNPF to control digestive organ functions in feeding and utilizing feed. Taken together, our first findings indicated that MrNPF was differentially expressed in digestive organs in correlation with the ovarian cycle, suggesting an important link between MrNPF, the physiology of various digestive organs in feeding, and possibly ovarian maturation in female M. rosenbergii.

3.
Cell Tissue Res ; 391(3): 457-483, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36697719

RESUMEN

In the sea cucumber, Holothuria scabra, the competent larvae require main settlement organs (SOs), including the ciliary bands (CiBs), tentacles (Ts), podia (PDs), and cues from neurotransmitters, including gamma-aminobutyric acid (GABA) and dopamine (DA), for successful settlement. In the present study, we investigated the spatial distribution of GABA and DA in the developmental stages of H. scabra, with special emphasis on SOs by detecting immunoreactivity (-ir) against these two neurotransmitters. Strong GABA-ir and DA-ir cells and fibers were specifically detected in several SO structures, including CiBs, CiB cells (CiBCs), and long cilia (LCi), of H. scabra larvae. Additionally, we found intense GABA-ir and DA-ir cells in the epithelial lining of bud-papillae (BP) and mesothelium (Me) in the stem (S) region of Ts in larvae and juveniles. Intense GABA-ir and DA-ir were observed in the epineural nerve plexus (ENP) and hyponeural nerve plexus (HNP) of Ts in H. scabra pentactula and juvenile stages. Staining for these two neurotransmitters was particularly intense in the PDs and their nerve fibers. We also found significant changes in the numbers of GABA-ir and DA-ir-positive cells and intensities in the CiBs, Ts, and PDs during the developmental stages. Taken together, we are the first to report on the existence and distribution of GABAergic and dopaminergic systems in structures associated with the settlement. Our findings provide new and important insights into the possible functions of these two neurotransmitters in regulating the settlement of this sea cucumber species.


Asunto(s)
Holothuria , Pepinos de Mar , Animales , Holothuria/química , Dopamina , Fibras Nerviosas , Ácido gamma-Aminobutírico
4.
Arch Biochem Biophys ; 745: 109712, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37543353

RESUMEN

Mangiferin, a polyphenolic xanthone glycoside found in various botanical sources, including mango (Mangifera indica L.) leaves, can exhibit a variety of bioactivities. Although mangiferin has been reported to inhibit many targets, none of the studies have investigated the inhibition of serine hydroxymethyltransferase (SHMT), an attractive target for antimalarial and anticancer drugs. SHMT, one of the key enzymes in the deoxythymidylate synthesis cycle, catalyzes the reversible conversion of l-serine and (6S)-tetrahydrofolate (THF) into glycine and 5,10-methylene THF. Here, in vitro and in silico studies were used to probe how mangiferin isolated from mango leaves inhibits Plasmodium falciparum and human cytosolic SHMTs. The inhibition kinetics at pH 7.5 revealed that mangiferin is a competitive inhibitor against THF for enzymes from both organisms. Molecular docking and molecular dynamic (MD) simulations demonstrated the inhibitory effects of the deprotonated forms of mangiferin, specifically the C6-O- species and its resonance C9-O- species appearing at pH 7.5, combined with two docked poses, either a xanthone or glucose moiety, placed inside the THF-binding pocket. The MD analysis revealed that both C6-O- and its resonance-stabilized C9-O- species can favorably bind to SHMT in a similar fashion to THF, supporting the THF competitive inhibition of mangiferin. In addition, characterization of the proton dissociation equilibria of isolated mangiferin revealed that only three hydroxy groups of the xanthone moiety, C6-OH, C3-OH, and C7-OH, underwent varying degrees of deprotonation with pKa values of 6.38 ± 0.11, 8.21 ± 0.35, and 12.37 ± 0.30, respectively, while C1-OH remained protonated. Altogether, our findings demonstrate a new bioactivity of mangiferin and provide the basis for the future development of mangiferin as a potent antimalarial and anticancer drug.


Asunto(s)
Antimaláricos , Antineoplásicos , Antagonistas del Ácido Fólico , Xantonas , Humanos , Antimaláricos/farmacología , Glicina Hidroximetiltransferasa , Simulación del Acoplamiento Molecular , Xantonas/farmacología , Antineoplásicos/farmacología , Serina/química
5.
Arch Biochem Biophys ; 747: 109768, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37769893

RESUMEN

3,4-Dihydroxyphenylacetate (DHPA) 2,3-dioxygenase (EC 1.13.11.15) from Acinetobacter baumannii (AbDHPAO) is an enzyme that catalyzes the 2,3-extradiol ring-cleavage of DHPA in the p-hydroxyphenylacetate (HPA) degradation pathway. While the biochemical reactions of various DHPAOs have been reported, only structures of DHPAO from Brevibacterium fuscum and their homologs are available. Here, we report the X-ray structure and biochemical characterization of an Fe2+-specific AbDHPAO that shares 12% sequence identity to the enzyme from B. fuscum. The 1.8 Å X-ray structure of apo-AbDHPAO was determined with four subunits per asymmetric unit, consistent with a homotetrameric structure. Interestingly, the αß-sandwiched fold of the AbDHPAO subunit is different from the dual ß-barrel-like motif of the well-characterized B. fuscum DHPAO structures; instead, it is similar to the structures of non-DHPA extradiol dioxygenases from Comamonas sp. and Sphingomonas paucimobilis. Similarly, these extradiol dioxygenases share the same chemistry owing to a conserved 2-His-1-carboxylate catalytic motif. Structure analysis and molecular docking suggested that the Fe2+ cofactor and substrate binding sites consist of the conserved residues His12, His57, and Glu238 forming a 2-His-1-carboxylate motif ligating to Fe2+ and DHPA bound with Fe2+ in an octahedral coordination. In addition to DHPA, AbDHPAO can also use other 3,4-dihydroxyphenylacetate derivatives with different aliphatic carboxylic acid substituents as substrates, albeit with low reactivity. Altogether, this report provides a better understanding of the structure and biochemical properties of AbDHPAO and its homologs, which is advancing further modification of DHPAO in future applications.

6.
J Biol Chem ; 297(5): 101280, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34624314

RESUMEN

Aldolases catalyze the reversible reactions of aldol condensation and cleavage and have strong potential for the synthesis of chiral compounds, widely used in pharmaceuticals. Here, we investigated a new Class II metal aldolase from the p-hydroxyphenylacetate degradation pathway in Acinetobacter baumannii, 4-hydroxy-2-keto-heptane-1,7-dioate aldolase (AbHpaI), which has various properties suitable for biocatalysis, including stereoselectivity/stereospecificity, broad aldehyde utilization, thermostability, and solvent tolerance. Notably, the use of Zn2+ by AbHpaI as a native cofactor is distinct from other enzymes in this class. AbHpaI can also use other metal ion (M2+) cofactors, except Ca2+, for catalysis. We found that Zn2+ yielded the highest enzyme complex thermostability (Tm of 87 °C) and solvent tolerance. All AbHpaI•M2+ complexes demonstrated preferential cleavage of (4R)-2-keto-3-deoxy-D-galactonate ((4R)-KDGal) over (4S)-2-keto-3-deoxy-D-gluconate ((4S)-KDGlu), with AbHpaI•Zn2+ displaying the highest R/S stereoselectivity ratio (sixfold higher than other M2+ cofactors). For the aldol condensation reaction, AbHpaI•M2+ only specifically forms (4R)-KDGal and not (4S)-KDGlu and preferentially catalyzes condensation rather than cleavage by ∼40-fold. Based on 11 X-ray structures of AbHpaI complexed with M2+ and ligands at 1.85 to 2.0 Å resolution, the data clearly indicate that the M2+ cofactors form an octahedral geometry with Glu151 and Asp177, pyruvate, and water molecules. Moreover, Arg72 in the Zn2+-bound form governs the stereoselectivity/stereospecificity of AbHpaI. X-ray structures also show that Ca2+ binds at the trimer interface via interaction with Asp51. Hence, we conclude that AbHpaI•Zn2+ is distinctive from its homologues in substrate stereospecificity, preference for aldol formation over cleavage, and protein robustness, and is attractive for biocatalytic applications.


Asunto(s)
Acinetobacter baumannii/enzimología , Calcio/química , Fructosa-Bifosfato Aldolasa/química , Zinc/química , Proteínas Bacterianas , Catálisis , Dominio Catalítico , Cristalografía por Rayos X , Estabilidad de Enzimas , Especificidad por Sustrato
7.
J Chem Inf Model ; 62(2): 399-411, 2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-34989561

RESUMEN

Bacterial luciferase (Lux) catalyzes oxidation of reduced flavin mononucleotide (FMN) and aldehyde to form oxidized FMN and carboxylic acid via molecular oxygen with concomitant light generation. The enzyme is useful for various detection applications in biomedical experiments. Upon reacting with oxygen, the reduced FMN generates C4a-peroxy-FMN (FMNH-C4a-OO-) as a reactive intermediate, which is required for light generation. However, the mechanism and control of FMNH-C4a-OO- formation are not clear. This work investigated the reaction of FMNH-C4a-OO- formation in Lux using QM/MM methods. The B3LYP/6-31G*/CHARMM27 calculations indicate that Lux controls the formation of FMNH-C4a-OO- via the conserved His44 residue. The steps in intermediate formation are found to be as follows: (i) H+ reacts with O2 to generate +OOH. (ii) +OOH attacks C4a of FMNH- to generate FMNH-C4a-OOH. (iii) H+ is transferred from FMNH-C4a-OOH to His44 to generate FMNH-C4a-OO- while His44 stabilizes FMNH-C4a-OO- by forming a hydrogen bond to an oxygen atom. This controlling key mechanism for driving the change from FMNH-C4a-OOH to the FMNH-C4a-OO- adduct is confirmed because FMNH-C4a-OO- is more stable than FMNH-C4a-OOH in the luciferase active site.


Asunto(s)
Luciferasas de la Bacteria , Peróxidos , Flavinas/química , Flavinas/metabolismo , Cinética , Luciferasas/metabolismo , Luciferasas de la Bacteria/química , Oxidación-Reducción
8.
Angew Chem Int Ed Engl ; 61(16): e202116908, 2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35138676

RESUMEN

D-Luciferin (D-LH2 ), a substrate of firefly luciferase (Fluc), is important for a wide range of bioluminescence applications. This work reports a new and green method using enzymatic reactions (HELP, HadA Enzyme for Luciferin Preparation) to convert 19 phenolic derivatives to 8 D-LH2 analogues with ≈51 % yield. The method can synthesize the novel 5'-methyl-D-LH2 and 4',5'-dimethyl-D-LH2 , which have never been synthesized or found in nature. 5'-Methyl-D-LH2 emits brighter and longer wavelength light than the D-LH2 . Using HELP, we further developed LUMOS (Luminescence Measurement of Organophosphate and Derivatives) technology for in situ detection of organophosphate pesticides (OPs) including parathion, methyl parathion, EPN, profenofos, and fenitrothion by coupling the reactions of OPs hydrolase and Fluc. The LUMOS technology can detect these OPs at parts per trillion (ppt) levels. The method can directly detect OPs in food and biological samples without requiring sample pretreatment.


Asunto(s)
Luciferina de Luciérnaga , Plaguicidas , Luciferasas de Luciérnaga , Luciferinas , Luminiscencia , Mediciones Luminiscentes/métodos
9.
J Biol Chem ; 294(30): 11536-11548, 2019 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-31182484

RESUMEN

An engineered metabolic pathway consisting of reactions that convert fatty acids to aldehydes and eventually alkanes would provide a means to produce biofuels from renewable energy sources. The enzyme aldehyde-deformylating oxygenase (ADO) catalyzes the conversion of aldehydes and oxygen to alkanes and formic acid and uses oxygen and a cellular reductant such as ferredoxin (Fd) as co-substrates. In this report, we aimed to increase ADO-mediated alkane production by converting an unused by-product, formate, to a reductant that can be used by ADO. We achieved this by including the gene (fdh), encoding formate dehydrogenase from Xanthobacter sp. 91 (XaFDH), into a metabolic pathway expressed in Escherichia coli Using this approach, we could increase bacterial alkane production, resulting in a conversion yield of ∼50%, the highest yield reported to date. Measuring intracellular nicotinamide concentrations, we found that E. coli cells harboring XaFDH have a significantly higher concentration of NADH and a higher NADH/NAD+ ratio than E. coli cells lacking XaFDH. In vitro analysis disclosed that ferredoxin (flavodoxin):NADP+ oxidoreductase could use NADH to reduce Fd and thus facilitate ADO-mediated alkane production. As formic acid can decrease the cellular pH, the addition of formate dehydrogenase could also maintain the cellular pH in the neutral range, which is more suitable for alkane production. We conclude that this simple, dual-pronged approach of increasing NAD(P)H and removing extra formic acid is efficient for increasing the production of renewable alkanes via synthetic biology-based approaches.


Asunto(s)
Alcanos/metabolismo , Formiato Deshidrogenasas/metabolismo , Ingeniería Metabólica/métodos , Xanthobacter/metabolismo , Biocombustibles , Catálisis , Clonación Molecular , Escherichia coli/genética , Ácidos Grasos/metabolismo , Formiato Deshidrogenasas/genética , NAD/metabolismo , Oxidación-Reducción , Xanthobacter/enzimología
10.
Chembiochem ; 21(14): 2073-2079, 2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32187433

RESUMEN

Bacterial luciferase (Lux) catalyzes a bioluminescence reaction by using long-chain aldehyde, reduced flavin and molecular oxygen as substrates. The reaction can be applied in reporter gene systems for biomolecular detection in both prokaryotic and eukaryotic organisms. Because reduced flavin is unstable under aerobic conditions, another enzyme, flavin reductase, is needed to supply reduced flavin to the Lux-catalyzed reaction. To create a minimized cascade for Lux that would have greater ease of use, a chemoenzymatic reaction with a biomimetic nicotinamide (BNAH) was used in place of the flavin reductase reaction in the Lux system. The results showed that the minimized cascade reaction can be applied to monitor bioluminescence of the Lux reporter in eukaryotic cells effectively, and that it can achieve higher efficiencies than the system with flavin reductase. This development is useful for future applications as high-throughput detection tools for drug screening applications.


Asunto(s)
Genes Reporteros , Luciferasas de la Bacteria/metabolismo , NAD/análogos & derivados , Vibrio/enzimología , FMN Reductasa/metabolismo , Flavinas/química , Flavinas/metabolismo , Genes Reporteros/genética , Células HEK293 , Humanos , Luciferasas de la Bacteria/química , Luciferasas de la Bacteria/genética , Mediciones Luminiscentes , Estructura Molecular , NAD/química , NAD/metabolismo , Vibrio/citología
11.
Artículo en Inglés | MEDLINE | ID: mdl-29344679

RESUMEN

In the present study, the distribution and dynamic expression of serotonin and dopamine in the nervous system and ovary of the sea cucumber, Holothuria scabra, during different ovarian stages were investigated. We found that serotonin-immunoreactivity was more intense in the neurons and neuropils of the outer ectoneural part, the inner hyponeural part, and the wall of hyponeural canal of radial nerve cord during the mature stages of ovarian cycle, whereas dopamine-immunoreactivity was detected at a higher intensity in these tissues during the early stages. Both neurotransmitters were detected in the ectoneural part of the nerve ring. In the ovary, serotonin intensity was more intense in the cytoplasm of late oocytes, while dopamine-immunoreactivity was more intense in the early stages. The changes in the levels serotonin in the radial nerve cord and oocytes are incremental towards the late stages of ovarian maturation. In contrast, dopamine levels in the nervous tissues and oocytes were more intense in early stages and became decremental towards the late stages. These findings suggest that serotonin and dopamine may have opposing effects on ovarian development in this sea cucumber species.


Asunto(s)
Dopamina/metabolismo , Holothuria/metabolismo , Serotonina/metabolismo , Animales , Femenino , Holothuria/citología , Neuronas/citología , Neuronas/metabolismo , Oocitos/citología , Oocitos/metabolismo , Ovario/citología , Ovario/metabolismo
12.
Gen Comp Endocrinol ; 225: 71-80, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26393313

RESUMEN

We investigated the changes in the levels of serotonin (5-HT) and dopamine (DA), and their possible roles during embryonic development of the freshwater prawn, Macrobrachium rosenbergii. The 5-HT and DA concentrations were quantified using high performance liquid chromatography with electrochemical detection (HPLC-ECD). The levels of 5-HT and DA gradually increased from early developing embryos to late developing embryos. The 5-HT concentrations gradually increased from the pale yellow egg to orange egg stages, and reaching a maximum at the black egg stage. DA concentrations were much lower in the early embryos than those of 5-HT (P<0.05), and gradually increased to reach the highest level at the black egg stage. Immunohistochemically, 5-HT was firstly detected in the early embryonic stages, whereas DA developed later than 5-HT. Functionally, 5-HT-treated female prawns at doses of 2.5×10(-5), 2.5×10(-6) and 2.5×10(-7)mol/prawn, produced embryos with significantly shortened lengths of early embryonic stages, whereas DA-treated prawns at all three doses, exerted its effects by significantly lengthening the period of mid-embryonic stage onwards. These results suggest significant involvement of 5-HT and DA in embryonic developmental processes of this species.


Asunto(s)
Dopamina/fisiología , Desarrollo Embrionario/fisiología , Regulación del Desarrollo de la Expresión Génica , Palaemonidae/fisiología , Serotonina/fisiología , Animales , Cromatografía Líquida de Alta Presión , Dopamina/genética , Dopamina/metabolismo , Femenino , Palaemonidae/genética , Palaemonidae/metabolismo , Serotonina/genética , Serotonina/metabolismo
13.
Gen Comp Endocrinol ; 210: 12-22, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25305581

RESUMEN

Octopamine (OA) is a major neurotransmitter that has not been studied in the Pacific white shrimp, Litopenaeus vannamei. Therefore, we investigated changes in OA levels, its distribution in regions of the central nervous system (CNS) and ovary during the ovarian maturation cycle, as well as its possible role in regulating ovarian maturation. OA exhibited the highest concentration in the brain and thoracic ganglia at ovarian stage II, and then declined to the lowest concentration at ovarian stages III and IV. In the cerebral ganglia, OA-immunoreactivity (OA-ir) was present in neurons of clusters 6, 17, the anterior and posterior medial protocerebral, olfactory, antenna II, and tegumentary neuropils. In the circumesophageal, subesophageal, thoracic ganglia and abdominal ganglia, OA-ir was detected in several neuropils, neurons and fibers. The high level of intensity in OA immunostaining was observed in early developmental stage of oocyte by comparison with low level of OA-ir in late stages of oocyte development. Functionally, OA-injected female shrimps at doses of 2.5×10(-7) and 2.5×10(-6)mol/shrimp, showed significantly decreased gonado-somatic indices, oocyte diameters, and hemolymph vitellogenin levels, compared with control groups. This study showed changes of OA in the CNS and ovary reaching the highest level in early ovarian stages and declining in late stages, and it decreased hemolymph vitellogenin levels, suggesting significant involvement of OA in female reproduction in this species.


Asunto(s)
Sistema Nervioso Central/metabolismo , Octopamina/metabolismo , Ovario/crecimiento & desarrollo , Ovario/metabolismo , Penaeidae , Animales , Femenino , Hemolinfa/química , Hemolinfa/metabolismo , Humanos , Neuronas/citología , Neuronas/metabolismo , Oogénesis/fisiología , Penaeidae/crecimiento & desarrollo , Penaeidae/metabolismo , Vitelogeninas/análisis , Vitelogeninas/metabolismo
14.
Arch Biochem Biophys ; 555-556: 33-46, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24857824

RESUMEN

Two-component flavin-dependent enzymes are abundant in nature and are involved in a wide variety of biological reactions. These enzymes consist of a reductase which generates a reduced flavin and a monooxygenase that utilizes the reduced flavin as a substrate for monooxygenation. As reduced flavin is unstable and can be oxidized by oxygen, these enzymes must have a means to efficiently coordinate the transfer of the reduced flavin such that auto-oxidation can be minimized. Various types of experiments and methodologies have been used to probe the mode of reduced flavin transfer. Results from many systems have indicated that the transfer can be achieved by free diffusion and that the presence of one component has no influence on the kinetics of the other component. Contradicting results indicating that the transfer of the reduced flavin may be achieved via protein-protein mediation also exist. Regardless of the mode of reduced flavin transfer, these enzymes have a means to control their overall kinetics such that the reaction rate is slow when the demand for oxygenation is not high.


Asunto(s)
Dinitrocresoles/metabolismo , Oxidorreductasas/metabolismo , Antraquinonas/metabolismo , Proteínas Bacterianas/metabolismo , Difusión , Cinética , Luciferasas de la Bacteria/metabolismo , Oxigenasas de Función Mixta/metabolismo , Oxidación-Reducción
15.
Biotechnol J ; 19(1): e2300330, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38180313

RESUMEN

NAD+ -dependent formate dehydrogenase (FDH) catalyzes the conversion of formate and NAD+ to produce carbon dioxide and NADH. The reaction is biotechnologically important because FDH is widely used for NADH regeneration in various enzymatic syntheses. However, major drawbacks of this versatile enzyme in industrial applications are its low activity, requiring its utilization in large amounts to achieve optimal process conditions. Here, FDH from Bacillus simplex (BsFDH) was characterized for its biochemical and catalytic properties in comparison to FDH from Pseudomonas sp. 101 (PsFDH), a commonly used FDH in various biocatalytic reactions. The data revealed that BsFDH possesses high formate oxidizing activity with a kcat value of 15.3 ± 1.9 s-1 at 25°C compared to 7.7 ± 1.0 s-1 for PsFDH. At the optimum temperature (60°C), BsFDH exhibited 6-fold greater activity than PsFDH. The BsFDH displayed higher pH stability and a superior tolerance toward sodium azide and H2 O2 inactivation, showing a 200-fold higher Ki value for azide inhibition and remaining stable in the presence of 0.5% H2 O2 compared to PsFDH. The application of BsFDH as a cofactor regeneration system for the detoxification of 4-nitrophenol by the reaction of HadA, which produced a H2 O2 byproduct was demonstrated. The biocatalytic cascades using BsFDH demonstrated a distinct superior conversion activity because the system tolerated H2 O2 well. Altogether, the data showed that BsFDH is a robust enzyme suitable for future application in industrial biotechnology.


Asunto(s)
Bacillus , Formiato Deshidrogenasas , NAD , Formiato Deshidrogenasas/metabolismo , NAD/metabolismo , Catálisis , Formiatos
16.
Biochemistry ; 52(39): 6834-43, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24004065

RESUMEN

Bacterial luciferase (LuxAB) is a two-component flavin mononucleotide (FMN)-dependent monooxygenase that catalyzes the oxidation of reduced FMN (FMNH(-)) and a long-chain aliphatic aldehyde by molecular oxygen to generate oxidized FMN, the corresponding aliphatic carboxylic acid, and concomitant emission of light. The LuxAB reaction requires a flavin reductase to generate FMNH(-) to serve as a luciferin in its reaction. However, FMNH(-) is unstable and can react with oxygen to generate H2O2, so that it is important to transfer it efficiently to LuxAB. Recently, LuxG has been identified as a NADH:FMN oxidoreductase that supplies FMNH(-) to luciferase in vivo. In this report, the mode of transfer of FMNH(-) between LuxG from Photobacterium leiognathi TH1 and LuxABs from both P. leiognathi TH1 and Vibrio campbellii (PlLuxAB and VcLuxAB, respectively) was investigated using single-mixing and double-mixing stopped-flow spectrophotometry. The oxygenase component of p-hydroxyphenylacetate hydroxylase (C2) from Acinetobacter baumannii, which has no structural similarity to LuxAB, was used to measure the kinetics of release of FMNH(-) from LuxG. With all FMNH(-) acceptors used (C2, PlLuxAB, and VcLuxAB), the kinetics of FMN reduction on LuxG were the same, showing that LuxG releases FMNH(-) with a rate constant of 4.5-6 s(-1). Our data showed that the kinetics of binding of FMNH(-)to PlLuxAB and VcLuxAB and the subsequent reactions with oxygen were the same with either free FMNH(-) or FMNH(-) generated in situ by LuxG. These results strongly suggest that no complexes between LuxG and the various species are necessary to transfer FMNH(-) to the acceptors. The kinetics of the overall reactions and the individual rate constants correlate well with a free diffusion model for the transfer of FMNH(-) from LuxG to either LuxAB.


Asunto(s)
Proteínas Bacterianas/metabolismo , Difusión , Mononucleótido de Flavina/metabolismo , Luciferasas/metabolismo , Oxidorreductasas/metabolismo , Biocatálisis , Estructura Molecular , Photobacterium/enzimología , Vibrio/enzimología
17.
Viruses ; 15(9)2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37766331

RESUMEN

African swine fever (ASF) is a highly contagious and economically devastating disease affecting domestic pigs and wild boar, caused by African swine fever virus (ASFV). Despite being harmless to humans, ASF poses significant challenges to the swine industry, due to sudden losses and trade restrictions. The ongoing COVID-19 pandemic has spurred an unparalleled global research effort, yielding remarkable advancements across scientific disciplines. In this review, we explore the potential technological spillover from COVID-19 research into ASF. Specifically, we assess the applicability of the diagnostic tools, vaccine development strategies, and biosecurity measures developed for COVID-19 for combating ASF. Additionally, we discuss the lessons learned from the pandemic in terms of surveillance systems and their implications for managing ASF. By bridging the gap between COVID-19 and ASF research, we highlight the potential for interdisciplinary collaboration and technological spillovers in the battle against ASF.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , COVID-19 , Animales , Humanos , Porcinos , Fiebre Porcina Africana/epidemiología , Fiebre Porcina Africana/prevención & control , COVID-19/prevención & control , Pandemias/prevención & control , Sus scrofa
18.
FEBS J ; 290(9): 2449-2462, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36177488

RESUMEN

Succinic semialdehyde dehydrogenase (SSADH) catalyses the conversion of succinic semialdehyde into succinic acid and two electrons are transferred to NAD(P)+ to yield NAD(P)H. Our previous work has already reported the catalytic role of Cys289 of two-cysteine SSADH from Acinetobacter baumannii (AbSSADH). However, the mechanistic role of the neighbouring conserved Cys291 and Glu255 remains unexplored. In this study, the functional roles of Cys291 and Glu255 in AbSSADH catalysis have been characterized. Results demonstrated that the E255A activity was almost completely lost, ~ 7000-fold lower than the wild-type (WT), indicating that Glu255 is very crucial and directly involved in AbSSADH catalysis. However, the C291A and C291S variants activity and catalytic turnover (kcat ) decreased ~ 2-fold and 9-fold respectively. To further characterize the functional roles of Cys291, we employed two pH-dependent methods; pre-steady-state burst amplitude and NADP-enzyme adduct formation. The results showed that the pKa values of catalytic Cys289 measured for the WT and C291A reactions were 7.8 and 8.7-8.8, respectively, suggesting that Cys291 can lower the pKa of Cys289 and consequently trigger the deprotonation of a Cys289 thiol. In addition, the Cys291 also plays a role in disulfide/sulfhydryl redox regulation for AbSSADH activity. Hence, we demonstrated for the first time the dual functions of Cys291 in enhancing the nucleophilicity of the catalytic Cys289 and regulating a disulfide/sulfhydryl redox switch for AbSSADH catalysis. The mechanistic insights into the nucleophilicity enhancement of the catalytic cysteine of AbSSADH might be applicable to understanding how the microenvironment increases cysteine reactivity in other enzymes in the aldehyde dehydrogenase superfamily.


Asunto(s)
Cisteína , Succionato-Semialdehído Deshidrogenasa , Succionato-Semialdehído Deshidrogenasa/metabolismo , Cisteína/química , NAD/metabolismo , Catálisis , Aldehído Deshidrogenasa/metabolismo , Compuestos de Sulfhidrilo , Cinética
19.
FEBS J ; 290(21): 5171-5195, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37522421

RESUMEN

The dimethyl sulfone monooxygenase system is a two-component flavoprotein, catalyzing the monooxygenation of dimethyl sulfone (DMSO2 ) by oxidative cleavage producing methanesulfinate and formaldehyde. The reductase component (DMSR) is a flavoprotein with FMN as a cofactor, catalyzing flavin reduction using NADH. The monooxygenase (DMSMO) uses reduced flavin from the reductase and oxygen for substrate monooxygenation. DMSMO can bind to FMN and FMNH- with a Kd of 17.4 ± 0.9 µm and 4.08 ± 0.8 µm, respectively. The binding of FMN to DMSMO is required prior to binding DMSO2 . This also applies to the fast binding of reduced FMN to DMSMO followed by DMSO2 . Substituting reduced DMSR with FMNH- demonstrated the same oxidation kinetics, indicating that FMNH- from DMSR was transferred to DMSMO. The oxidation of FMNH- :DMSMO, with and without DMSO2 did not generate any flavin adducts for monooxygenation. Therefore, H2 O2 is likely to be the reactive agent to attack the substrate. The H2 O2 assay results demonstrated production of H2 O2 from the oxidation of FMNH- :DMSMO, whereas H2 O2 was not detected in the presence of DMSO2 , confirming H2 O2 utilization. The rate constant for methanesulfinate formation determined from rapid quenched flow and the rate constant for flavin oxidation were similar, indicating that H2 O2 rapidly reacts with DMSO2 , with flavin oxidation as the rate-limiting step. This is the first report of the kinetic mechanisms of both components using rapid kinetics and of a method for methanesulfinate detection using LC-MS.


Asunto(s)
Dimetilsulfóxido , Oxigenasas de Función Mixta , Oxigenasas de Función Mixta/metabolismo , Peróxido de Hidrógeno , Flavoproteínas/metabolismo , Oxidorreductasas/metabolismo , Oxidación-Reducción , Flavinas/metabolismo , Cinética , Mononucleótido de Flavina/metabolismo
20.
ACS Omega ; 8(39): 35580-35591, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37810721

RESUMEN

Malaria has spread in many countries, with a 12% increase in deaths after the coronavirus disease 2019 pandemic. Malaria is one of the most concerning diseases in the Greater Mekong subregion, showing increased drug-resistant rates. Serine hydroxymethyltransferase (SHMT), a key enzyme in the deoxythymidylate synthesis pathway, has been identified as a promising antimalarial drug target due to its conserved folate binding pocket. This study used a molecular docking approach to screen 2509 US Food and Drug Administration (FDA)-approved drugs against seven Plasmodium SHMT structures. Eight compounds had significantly lower binding energies than the known SHMT inhibitors pyrazolopyran(+)-86, tetrahydrofolate, and antimalarial drugs, ranging from 4 to 10 kcal/mol. Inhibition assays testing the eight compounds against Plasmodium falciparum SHMT (PfSHMT) showed that amphotericin B was a competitive inhibitor of PfSHMT with a half-maximal inhibitory concentration (IC50) of 106 ± 1 µM. Therefore, a 500 ns molecular dynamics simulation of PfSHMT/PLS/amphotericin B was performed. The backbone root-mean-square deviation of the protein-ligand complex indicated the high complex stability during simulations, supported by its radius of gyration, hydrogen-bond interactions, and number of atom contacts. The appreciable binding affinity of amphotericin B for PfSHMT was indicated by their solvated interaction energy (-11.15 ± 0.09 kcal/mol) and supported by strong ligand-protein interactions (≥80% occurrences) with its essential residues (i.e., Y78, K151, N262, F266, and V365) predicted by pharmacophore modeling and per-residue decomposition free energy methods. Therefore, our findings identify a promising new PfSHMT inhibitor, albeit with less inhibitory activity, and suggest a core structure that differs from that of previous SHMT inhibitors, thus being a rational approach for novel antimalarial drug design.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA