Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS Comput Biol ; 7(6): e1002106, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21738464

RESUMEN

NMDA receptors (NMDARs) are the major mediator of the postsynaptic response during synaptic neurotransmission. The diversity of roles for NMDARs in influencing synaptic plasticity and neuronal survival is often linked to selective activation of multiple NMDAR subtypes (NR1/NR2A-NMDARs, NR1/NR2B-NMDARs, and triheteromeric NR1/NR2A/NR2B-NMDARs). However, the lack of available pharmacological tools to block specific NMDAR populations leads to debates on the potential role for each NMDAR subtype in physiological signaling, including different models of synaptic plasticity. Here, we developed a computational model of glutamatergic signaling at a prototypical dendritic spine to examine the patterns of NMDAR subtype activation at temporal and spatial resolutions that are difficult to obtain experimentally. We demonstrate that NMDAR subtypes have different dynamic ranges of activation, with NR1/NR2A-NMDAR activation sensitive at univesicular glutamate release conditions, and NR2B containing NMDARs contributing at conditions of multivesicular release. We further show that NR1/NR2A-NMDAR signaling dominates in conditions simulating long-term depression (LTD), while the contribution of NR2B containing NMDAR significantly increases for stimulation frequencies that approximate long-term potentiation (LTP). Finally, we show that NR1/NR2A-NMDAR content significantly enhances response magnitude and fidelity at single synapses during chemical LTP and spike timed dependent plasticity induction, pointing out an important developmental switch in synaptic maturation. Together, our model suggests that NMDAR subtypes are differentially activated during different types of physiological glutamatergic signaling, enhancing the ability for individual spines to produce unique responses to these different inputs.


Asunto(s)
Ácido Glutámico/metabolismo , Modelos Neurológicos , Receptores de N-Metil-D-Aspartato/metabolismo , Transmisión Sináptica/fisiología , Análisis de Varianza , Región CA1 Hipocampal/metabolismo , Calcio/metabolismo , Biología Computacional/métodos , Espinas Dendríticas , Transducción de Señal , Estadísticas no Paramétricas , Procesos Estocásticos , Sinapsis/metabolismo
2.
Nat Neurosci ; 14(12): 1599-605, 2011 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-22081157

RESUMEN

Arrays of electrodes for recording and stimulating the brain are used throughout clinical medicine and basic neuroscience research, yet are unable to sample large areas of the brain while maintaining high spatial resolution because of the need to individually wire each passive sensor at the electrode-tissue interface. To overcome this constraint, we developed new devices that integrate ultrathin and flexible silicon nanomembrane transistors into the electrode array, enabling new dense arrays of thousands of amplified and multiplexed sensors that are connected using fewer wires. We used this system to record spatial properties of cat brain activity in vivo, including sleep spindles, single-trial visual evoked responses and electrographic seizures. We found that seizures may manifest as recurrent spiral waves that propagate in the neocortex. The developments reported here herald a new generation of diagnostic and therapeutic brain-machine interface devices.


Asunto(s)
Mapeo Encefálico , Ondas Encefálicas/fisiología , Electrodos Implantados , Electrónica/instrumentación , Corteza Visual/fisiología , Animales , Gatos , Estimulación Eléctrica/efectos adversos , Estimulación Eléctrica/métodos , Electroencefalografía/métodos , Potenciales Evocados Visuales , Microelectrodos , Análisis Numérico Asistido por Computador , Estimulación Luminosa , Convulsiones/etiología , Convulsiones/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA