Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 108(1): 87, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38189954

RESUMEN

Modern requirements for 'green label' meat products have led to the design of novel antimicrobial innovations which prioritise quality, safety and longevity. Plasma-functionalised water (PFW), ultraviolet light and natural antimicrobial compositions have been investigated and optimised for control of foodborne pathogens like Campylobacter jejuni and Salmonella enterica serovar Typhimurium. However, given the adaptive mechanisms present in bacteria under external stresses, it is imperative to understand the effect that sublethal treatment may have on the bacterial transcriptome. In this study, Salmonella Typhimurium and C. jejuni were treated with sublethal doses of ultraviolet light, a citrus juice/essential oil marinade, and 'spark' or 'glow' cold plasma generation system-produced PFW. Immediately after treatment, cells were lysed and RNA was extracted and purified. mRNA was converted to cDNA by reverse transcription-PCR and sequenced by an Illumina MiSeq® system. Sequences were filtered and analysed using the Tuxedo workflow. Sublethal treatment of Campylobacter jejuni and Salmonella Typhimurium led to increased immediate cellular and metabolic activity, as well as diversification in protein and metabolic functioning. There was further expression of pathogenesis and virulence-associated traits associated with spark PFW and marinade treatment of Salmonella Typhimurium. However, similar concerns were not raised with glow PFW or UV-treated samples. This study provides science-based evidence of the efficacy of multi-hurdle antimicrobial system using green-label marinades and PFW or UV to inactivate pathogens without upregulating virulence traits in surviving cells. This study will inform policymakers and food industry stakeholders and reinforces the need to incorporate in-line novel technologies to ensure consumer safety. KEY POINTS: • Salmonella and C. jejuni showed increased cell activity in immediate response to stress. • Virulence genes showed increased expression when treated with natural antimicrobials and sPFW. • Reduced immediate transcriptomic response to gPFW and UV treatment indicates lower risk.


Asunto(s)
Antiinfecciosos , Campylobacter jejuni , Carne , Antiinfecciosos/farmacología , Campylobacter jejuni/genética , ADN Complementario , Jugos de Frutas y Vegetales
2.
Mar Drugs ; 22(6)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38921572

RESUMEN

Utilization of fish rest raw material for fish oil extraction has received interest with the increasing demand for sustainable food sources. Enzymatic hydrolysis is an efficient method for the extraction of value-added compounds, but its effectiveness may be enhanced by high-pressure processing (HPP). However, HPP can induce lipid oxidation, affecting the quality of the oil. This study aimed to evaluate the quality of fish oil obtained after enzymatic hydrolysis of a mixture of rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar) rest raw material pretreated by HPP. Six pretreatments were tested prior to enzymatic hydrolysis; 200 MPa × 4 min, 200 MPa × 8 min, 400 MPa × 4 min, 400 MPa × 8 min, 600 MPa × 4 min, and 600 MPa × 8 min. The oil samples were analyzed for lipid oxidation parameters, free fatty acid content, fatty acid composition, and color changes over 8 weeks. The results confirmed that HPP may induce lipid oxidation and revealed significant influence of HPP parameters on lipid oxidation, with higher pressures leading to increased oxidation. Fatty acid composition varied among samples, but it was not substantially affected by HPP.


Asunto(s)
Ácidos Grasos , Aceites de Pescado , Oncorhynchus mykiss , Salmo salar , Animales , Oncorhynchus mykiss/metabolismo , Aceites de Pescado/química , Hidrólisis , Ácidos Grasos/análisis , Presión , Oxidación-Reducción
3.
Compr Rev Food Sci Food Saf ; 23(4): e13376, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38923698

RESUMEN

Cold plasma treatment is an innovative technology in the food processing and preservation sectors. It is primarily employed to deactivate microorganisms and enzymes without heat and chemical additives; hence, it is often termed a "clean and green" technology. However, food quality and safety challenges may arise during cold plasma processing due to potential chemical interactions between the plasma reactive species and food components. This review aims to consolidate and discuss data on the impact of cold plasma on the chemical constituents and physical and functional properties of major food products, including dairy, meat, nuts, fruits, vegetables, and grains. We emphasize how cold plasma induces chemical modification of key food components, such as water, proteins, lipids, carbohydrates, vitamins, polyphenols, and volatile organic compounds. Additionally, we discuss changes in color, pH, and organoleptic properties induced by cold plasma treatment and their correlation with chemical modification. Current studies demonstrate that reactive oxygen and nitrogen species in cold plasma oxidize proteins, lipids, and bioactive compounds upon direct contact with the food matrix. Reductions in nutrients and bioactive compounds, including polyunsaturated fatty acids, sugars, polyphenols, and vitamins, have been observed in dairy products, vegetables, fruits, and beverages following cold plasma treatment. Furthermore, structural alterations and the generation of volatile and non-volatile oxidation products were observed, impacting the color, flavor, and texture of food products. However, the effects on dry foods, such as seeds and nuts, are comparatively less pronounced. Overall, this review highlights the drawbacks, challenges, and opportunities associated with cold plasma treatment in food processing.


Asunto(s)
Manipulación de Alimentos , Gases em Plasma , Gases em Plasma/química , Manipulación de Alimentos/métodos , Frutas/química , Verduras/química , Conservación de Alimentos/métodos
4.
J Indian Assoc Pediatr Surg ; 29(2): 122-128, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38616837

RESUMEN

Context: Literature regarding hydatid disease in children is sparse. Aims: To highlight the peculiarities in the clinical pattern of pediatric hydatid disease (PHD). Settings and Design/Materials and Methods: Data were collected retrospectively from all children aged <18 years who presented to our tertiary care institute from July 2021 to June 2023 with hydatid disease involving any organ. Statistical Analysis Used: Simple statistical analysis involving sums, means, averages, and percentages. Results: Four of the 10 cases (40%) involved the lung, while only 2 (20%) involved the liver. There were five females and four males with an age range of 2-17 years. Four of the cases had primary extrahepatic extrapulmonary hydatid disease (40%), two involving the pancreas, one in the rectouterine pouch, and one intracranial. Conclusions: The clinical pattern of PHD is different from that of adults. Pulmonary echinococcosis is more common than hepatic involvement. Primary extrahepatic extrapulmonary hydatid disease is also more common in children than previously thought. A cystic lesion anywhere in a child warrants a differential of hydatid disease.

5.
Crit Rev Biotechnol ; 43(6): 904-919, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35786238

RESUMEN

In the modern era, macro-microalgae attract a strong interest across scientific disciplines, owing to the wide application of these cost-effective valuable bioresources in food, fuel, nutraceuticals, and pharmaceuticals etc. The practice of eco-friendly extraction techniques has led scientists to create alternative processes to the conventional methods, to enhance the extraction of the key valuable compounds from macro-microalgae. This review narrates the possible use of novel cell disruption techniques, including use of ionic liquid, deep eutectic solvent, surfactant, switchable solvents, high voltage electrical discharge, explosive decompression, compressional-puffing, plasma, and ozonation, which can enable the recovery of value added substances from macro-microalgae, complying with the principles of green chemistry and sustainability. The above-mentioned innovative techniques are reviewed with respect to their working principles, benefits, and possible applications for macro-microalgae bioactive compound recovery and biofuel. The benefits of these techniques compared to conventional extraction methods include shorter extraction time, improved yield, and reduced cost. Furthermore, various combinations of these innovative technologies are used for the extraction of thermolabile bioactive compounds. The challenges and prospects of the innovative extraction processes for the forthcoming improvement of environmentally and cost-effective macro-microalgal biorefineries are also explained in this review.


Asunto(s)
Microalgas , Microalgas/química , Solventes/química , Electricidad , Suplementos Dietéticos , Biotecnología/métodos , Biomasa
6.
Crit Rev Food Sci Nutr ; : 1-22, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37194650

RESUMEN

Compared with traditional methods, cavitation-based processing technology has received extensive attention for its low energy consumption and high processing efficiency. The cavitation phenomenon releases high energy due to the generation and collapse of bubbles, which improves the efficiency of various food processing. This review details the cavitation mechanism of ultrasonic cavitation (UC) and hydrodynamic cavitation (HC), factors affecting cavitation, the application of cavitation technology in food processing, and the application of cavitation technology in the extraction of various natural ingredients. The safety and nutrition of food processed by cavitation technology and future research directions are also discussed. The mechanism of UC refers to longitudinal displacement of the particles of the medium induced by ultrasonic waves causing a series of alternating compression and rarefaction of particles, whereas HC occurs when liquid enters a narrow section and undergoes large pressure differentials, both of which can trigger the generation, growth, and collapse of microbubbles. Cavitation could be applied in microbial inactivation, and drying and freezing processing. In addition, cavitation bubbles can have mechanical and thermal effects on plant cells. In general, cavitation technology is a new sustainable, green, and innovative technology with broad application prospects and capabilities.

7.
Crit Rev Food Sci Nutr ; 63(31): 10928-10946, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35648055

RESUMEN

Phycoerythrin (PE) is a photosensitive red pigment from phycobiliprotein family predominantly present in the red algae. The concentration of PE depends on photon flux density (PFD) and the quality of light absorbed by the algae tissue. This necessitates robust techniques to extract PE from the embedded cell-wall matrix of the algal frond. Similarly, PE is sensitive to various factors which influence its stability and purity of PE. The PE is extracted from Red algae through different extraction techniques. This review explores an integrative approach of fractionating PE for the scaling-up process and commercialization. The mechanism for stabilizing PE pigment in food was critically evaluated for further retaining this pigment within the food system. The challenges and possibilities of employing efficient extraction for industrial adoption are meticulously estimated. The techniques involved in the sustainable way of extracting PE pigments improved at a laboratory scale in the past decade. Although, the complexity of industrial-scale biorefining was found to be a bottleneck. The extraction of PE using benign chemicals would be safe for food applications to promote health benefits. The precise selection of encapsulation technique with enhanced sensitivity and selectivity of the membrane would bring better stability of PE in the food matrix.


Asunto(s)
Ficoeritrina , Rhodophyta , Promoción de la Salud , Alimentos
8.
Mar Drugs ; 21(9)2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37755091

RESUMEN

Marine algae are sources of bioactive components with defensive properties of great value against microbial infections. This study investigated the bioactivity of extracts from brown algae Fucus vesiculosus against rotavirus, the worldwide leading cause of acute gastroenteritis in infants and young children. Moreover, one of the extracts was tested against four foodborne bacteria: Campylobacter jejuni, Escherichia coli, Salmonella Typhimurium, and Listeria monocytogenes, and the non-pathogenic: E. coli K12. In vitro tests using MA104 cells revealed that both whole algae extracts and crude fucoidan precipitates neutralized rotavirus in a dose-responsive manner. The maximum neutralization activity was observed when the rotavirus was incubated with 100 µg mL-1 of the hydrochloric acid-obtained crude fucoidan (91.8%), although crude fucoidan extracted using citric acid also demonstrated high values (89.5%) at the same concentration. Furthermore, molecular weight fractionation of extracts decreased their antirotaviral activity and high molecular weight fractions exhibited higher activity compared to those of lower molecular weight. A seaweed extract with high antirotaviral activity was also found to inhibit the growth of C. jejuni, S. Typhimurium, and L. monocytogenes at a concentration of 0.2 mg mL-1. Overall, this study expands the current knowledge regarding the antimicrobial mechanisms of action of extracts from F. vesiculosus.


Asunto(s)
Fucus , Gastroenteritis , Rotavirus , Niño , Lactante , Humanos , Preescolar , Escherichia coli
9.
Food Microbiol ; 116: 104365, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37689419

RESUMEN

This study investigated the combined effect of Ultraviolet (UV) light-emitting diode (LED) technology treatment with refrigerated storage of chicken breast meat over 7 days on Campylobacter jejuni, Salmonella enterica serovar Typhimurium, total viable counts (TVC) and total Enterobacteriaceae counts (TEC). An optimised UV-LED treatment at 280 nm for 6 min decreased inoculated S. Typhimurium and C. jejuni populations by 0.6-0.64 log CFU/g, and TVC and TEC population by 1-1.2 log CFU/g in chicken samples. During a 7-day storage at 4 °C, a 0.73 log reduction in C. jejuni was achieved compared with non-treated samples. Moreover, the UV-LED effectiveness to reduce TVC and TEC during refrigerated storage was compared with a conventional UV lamp and a similar efficiency was observed. The impact of UV-LED and UV lamp devices on the microbial community composition of chicken meat during storage was further examined using 16 S rRNA gene amplicon sequencing. Although similar bacterial reductions were observed for both technologies, the microbial communities were impacted differently. Treatment with the UV conventional lamp increased the proportion of Brochothrix spp. In meat samples, whilst Photobacterium spp. Levels were reduced.


Asunto(s)
Campylobacter , Microbiota , Animales , Pollos , Rayos Ultravioleta , Enterobacteriaceae , Salmonella typhimurium
10.
Compr Rev Food Sci Food Saf ; 22(3): 1654-1685, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36861750

RESUMEN

Plasma-activated liquids (PALs) are emerging and promising alternatives to traditional decontamination technologies and have evolved as a new technology for applications in food, agriculture, and medicine. Contamination caused by foodborne pathogens and their biofilms has posed challenges and concerns to the food industry in terms of safety and quality. The nature of the food and the food processing environment are major factors that contribute to the growth of various microorganisms, followed by the biofilm characteristics that ensure their survival in severe environmental conditions and against traditional chemical disinfectants. PALs show an efficient impact against microorganisms and their biofilms, with various reactive species (short- and long-lived ones), physiochemical properties, and plasma processing factors playing a crucial role in mitigating biofilms. Moreover, there is potential to improve and optimize disinfection strategies using a combination of PALs with other technologies for the inactivation of biofilms. The overarching aim of this study is to build a better understanding of the parameters that govern the liquid chemistry generated in a liquid exposed to plasma and how these translate into biological effects on biofilms. This review provides a current understanding of PALs-mediated mechanisms of action on biofilms; however, the precise inactivation mechanism is still not clear and is an important part of the research. Implementation of PALs in the food industry could help overcome the disinfection hurdles and can enhance biofilm inactivation efficacy. Future perspectives in this field to expand existing state of the art to seek breakthroughs for scale-up and implementation of PALs technology in the food industry are also discussed.


Asunto(s)
Desinfectantes , Desinfectantes/farmacología , Desinfección , Manipulación de Alimentos , Industria de Alimentos , Biopelículas
11.
Crit Rev Food Sci Nutr ; 62(21): 5925-5949, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33764212

RESUMEN

In the last decades, different non-thermal and thermal technologies have been developed for food processing. However, in many cases, it is not clear which experimental parameters must be reported to guarantee the experiments' reproducibility and provide the food industry a straightforward way to scale-up these technologies. Since reproducibility is one of the most important science features, the current work aims to improve the reproducibility of studies on emerging technologies for food processing by providing guidelines on reporting treatment conditions of thermal and non-thermal technologies. Infrared heating, microwave heating, ohmic heating and radiofrequency heating are addressed as advanced thermal technologies and isostatic high pressure, ultra-high-pressure homogenization sterilization, high-pressure homogenization, microfluidization, irradiation, plasma technologies, power ultrasound, pressure change technology, pulsed electric fields, pulsed light and supercritical CO2 are approached as non-thermal technologies. Finally, growing points and perspectives are highlighted.


Asunto(s)
Conservación de Alimentos , Calor , Manipulación de Alimentos , Presión , Reproducibilidad de los Resultados
12.
Mar Drugs ; 20(11)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36354994

RESUMEN

In recent years, algae, both microalgae and macroalgae, have attracted the attention of the scientific community as a source of multiple active molecules or bioactives, including polysaccharides, fatty acids, proteins and peptides, polyphenols, diterpenes, steroids, and alkaloids [...].


Asunto(s)
Microalgas , Algas Marinas , Algas Marinas/química , Microalgas/metabolismo , Polisacáridos/química , Suplementos Dietéticos , Ácidos Grasos/metabolismo
13.
Mar Drugs ; 20(5)2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35621968

RESUMEN

Over the last decade, algae have been explored as alternative and sustainable protein sources for a balanced diet and more recently, as a potential source of algal-derived bioactive peptides with potential health benefits. This review will focus on the emerging processes for the generation and isolation of bioactive peptides or cryptides from algae, including: (1) pre-treatments of algae for the extraction of protein by physical and biochemical methods; and (2) methods for the generation of bioactive including enzymatic hydrolysis and other emerging methods. To date, the main biological properties of the peptides identified from algae, including anti-hypertensive, antioxidant and anti-proliferative/cytotoxic effects (for this review, anti-proliferative/cytotoxic will be referred to by the term anti-cancer), assayed in vitro and/or in vivo, will also be summarized emphasizing the structure-function relationship and mechanism of action of these peptides. Moreover, the use of in silico methods, such as quantitative structural activity relationships (QSAR) and molecular docking for the identification of specific peptides of bioactive interest from hydrolysates will be described in detail together with the main challenges and opportunities to exploit algae as a source of bioactive peptides.


Asunto(s)
Biología Computacional , Péptidos , Hidrólisis , Simulación del Acoplamiento Molecular , Péptidos/química , Péptidos/farmacología , Relación Estructura-Actividad
14.
Mar Drugs ; 20(12)2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36547919

RESUMEN

Marine algal species comprise of a large portion of polysaccharides which have shown multifunctional properties and health benefits for treating and preventing human diseases. Laminarin, or ß-glucan, a storage polysaccharide from brown algae, has been reported to have potential pharmacological properties such as antioxidant, anti-tumor, anti-coagulant, anticancer, immunomodulatory, anti-obesity, anti-diabetic, anti-inflammatory, wound healing, and neuroprotective potential. It has been widely investigated as a functional material in biomedical applications as it is biodegradable, biocompatible, and is low toxic substances. The reported preclinical and clinical studies demonstrate the potential of laminarin as natural alternative agents in biomedical and industrial applications such as nutraceuticals, pharmaceuticals, functional food, drug development/delivery, and cosmeceuticals. This review summarizes the biological activities of laminarin, including mechanisms of action, impacts on human health, and reported health benefits. Additionally, this review also provides an overview of recent advances and identifies gaps and opportunities for further research in this field. It further emphasizes the molecular characteristics and biological activities of laminarin in both preclinical and clinical settings for the prevention of the diseases and as potential therapeutic interventions.


Asunto(s)
Glucanos , Phaeophyceae , Humanos , Glucanos/farmacología , Polisacáridos/farmacología , Preparaciones Farmacéuticas
15.
J Sci Food Agric ; 102(14): 6293-6298, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35514139

RESUMEN

BACKGROUND: Hempseed meal, a by-product of the hempseed oil processing stream, is a potential alternative source for food proteins. Efficient extraction of proteins from hempseed meal is challenging owing to differences in the structure and solubility of various protein fractions present in the seed. In the present study, protein was extracted from hempseed meal using four different solvents, including aqueous NaOH, KOH, NaHCO3 and NaCl, at four different concentrations with the aim of improving the recovery of protein fractions rich in essential amino acids. RESULTS: Extraction using alkaline solvents provided superior protein recovery (60-78%) compared with NaCl solution and control extractions (20-48% and 21%, respectively). The concentration of alkali or salt (0.25-1 mol L-1 ) had a minor but significant impact on the yield. Amino acid composition analysis revealed that hempseed meal contains 24% (54.5 ± 0.19 mg g-1 ) essential amino acids of total amino acids, and extraction with NaOH, KOH, NaHCO3 or NaCl did not improve the selective extraction of essential amino acids compared to control experiments. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis allowed the identification of edestin and albumin in the extracts obtained with NaHCO3 and NaCl solvents, with results further showing that the type of extraction solvent influences protein extraction selectivity. CONCLUSION: Although alkali solvents provide superior extraction yields, extraction with water resulted in extracts containing the highest proportion of proteins bearing essential amino acids. According to the results of SDS-PAGE, extraction using alkali solvents induced protein crosslinking. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Semillas , Cloruro de Sodio , Albúminas/química , Aminoácidos/análisis , Aminoácidos Esenciales/análisis , Cannabis , Extractos Vegetales , Semillas/química , Cloruro de Sodio/análisis , Dodecil Sulfato de Sodio/análisis , Hidróxido de Sodio , Solventes/química , Agua/análisis
16.
Compr Rev Food Sci Food Saf ; 21(6): 5243-5271, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36214172

RESUMEN

Ultrasound is sound waves above 20 kHz that can be used as a nonthermal ''green'' technology for agri-food processing. It has a cavitation effect, causing bubbles to form and collapse rapidly as they travel through the medium during ultrasonication. Therefore, it inactivates microorganisms and enzymes through cell membrane disruption with physicochemical and sterilization effects on foods or beverages. This emerging technology has been explored in wineries to improve wine color, taste, aroma, and phenolic profile. This paper aims to comprehensively review the research on ultrasound applications in the winery and alcoholic beverages industry, discuss the impacts of this process on the physicochemical properties of liquors, the benefits involved, and the research needed in this area. Studies have shown that ultrasonic technology enhances wine maturation, improves wine fermentation, accelerates wine aging, and deactivates microbes while enhancing quality, as observed with better critical aging markers such as phenolic compounds and color intensity. Besides, ultrasound enhances phytochemical, physicochemical, biological, and organoleptic properties of alcoholic beverages. For example, this technology increased anthocyanin in red wine by 50%. It also enhanced the production rate by decreasing the aging time by more than 90%. Ultrasound can be considered an economically viable technology that may contribute to wineries' waste valorization, resource efficiency improvement, and industry profit enhancement. Despite numerous publications and successful industrial applications discussed in this paper, ultrasound up-scaling and applications for other types of liquors need further efforts.


Asunto(s)
Vino , Fermentación , Vino/análisis , Bebidas Alcohólicas , Manipulación de Alimentos , Fenoles/análisis , Esterilización
17.
Food Microbiol ; 96: 103708, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33494890

RESUMEN

Microbial contamination of fresh produce is a major public health concern, with the number of associated disease outbreaks increasing in recent years. The consumption of sprouted beans and seeds is of particular concern, as these foodstuffs are generally consumed raw, and are produced in conditions favourable for the growth of zoonotic pathogens, if present in seeds prior to sprouting or in irrigation water. This work aimed to evaluate the activity of plasma activated water (PAW) as a disinfecting agent for alfalfa (Medicago sativa) and mung bean (Vigna radiata) seeds, during seed soaking. Each seed type was inoculated with Escherichia coli O157, E. coli O104, Listeria monocytogenes or Salmonella Montevideo, and treated with PAW for different times. A combination of PAW and ultrasound treatment was also evaluated. The germination and growth rate of both seeds were assessed after PAW treatments. PAW was demonstrated to have disinfecting ability on sprouted seeds, with reductions of up to Log10 1.67 cfu/g in alfalfa seeds inoculated with E. coli O104, and a reduction of Log10 1.76 cfu/g for mung bean seeds inoculated with E. coli O157 observed. The germination and growth rate of alfalfa and mung bean sprouts were not affected by the PAW treatments. The combination of a PAW treatment and ultrasound resulted in increased antimicrobial activity, with a reduction of Log10 3.48 cfu/g of S. Montevideo in mung bean seeds observed. These results demonstrate the potential for PAW to be used for the inactivation of pathogenic microorganisms which may be present on sprouted seeds and beans, thereby providing greater assurance of produce safety.


Asunto(s)
Desinfectantes/farmacología , Desinfección/métodos , Escherichia coli O157/efectos de los fármacos , Listeria monocytogenes/efectos de los fármacos , Medicago sativa/microbiología , Salmonella/efectos de los fármacos , Vigna/microbiología , Agua/química , Desinfectantes/química , Desinfección/instrumentación , Escherichia coli O157/crecimiento & desarrollo , Contaminación de Alimentos/análisis , Contaminación de Alimentos/prevención & control , Germinación , Listeria monocytogenes/crecimiento & desarrollo , Medicago sativa/crecimiento & desarrollo , Salmonella/crecimiento & desarrollo , Semillas/crecimiento & desarrollo , Semillas/microbiología , Vigna/crecimiento & desarrollo , Agua/farmacología
18.
Mar Drugs ; 19(6)2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-34071764

RESUMEN

This study aims to explore novel extraction technologies (ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE), ultrasound-microwave-assisted extraction (UMAE), hydrothermal-assisted extraction (HAE) and high-pressure-assisted extraction (HPAE)) and extraction time post-treatment (0 and 24 h) for the recovery of phytochemicals and associated antioxidant properties from Fucus vesiculosus and Pelvetia canaliculata. When using fixed extraction conditions (solvent: 50% ethanol; extraction time: 10 min; algae/solvent ratio: 1/10) for all the novel technologies, UAE generated extracts with the highest phytochemical contents from both macroalgae. The highest yields of compounds extracted from F. vesiculosus using UAE were: total phenolic content (445.0 ± 4.6 mg gallic acid equivalents/g), total phlorotannin content (362.9 ± 3.7 mg phloroglucinol equivalents/g), total flavonoid content (286.3 ± 7.8 mg quercetin equivalents/g) and total tannin content (189.1 ± 4.4 mg catechin equivalents/g). In the case of the antioxidant activities, the highest DPPH activities were achieved by UAE and UMAE from both macroalgae, while no clear pattern was recorded in the case of FRAP activities. The highest DPPH scavenging activities (112.5 ± 0.7 mg trolox equivalents/g) and FRAP activities (284.8 ± 2.2 mg trolox equivalents/g) were achieved from F. vesiculosus. Following the extraction treatment, an additional storage post-extraction (24 h) did not improve the yields of phytochemicals or antioxidant properties of the extracts.


Asunto(s)
Antioxidantes/aislamiento & purificación , Técnicas de Química Analítica/métodos , Phaeophyceae/química , Fitoquímicos/aislamiento & purificación , Polifenoles/aislamiento & purificación , Antioxidantes/análisis , Antioxidantes/química , Fucus/química , Calor , Microondas , Fitoquímicos/análisis , Fitoquímicos/química , Polifenoles/análisis , Polifenoles/química , Presión , Ondas Ultrasónicas , Agua
19.
Mar Drugs ; 19(4)2021 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-33920329

RESUMEN

The exponential growth of emerging multidrug-resistant microorganisms, including foodborne pathogens affecting the shelf-life and quality of foods, has recently increased the needs of the food industry to search for novel, natural and eco-friendly antimicrobial agents. Macroalgae are a bio-diverse group distributed worldwide, known to produce multiple compounds of diverse chemical nature, different to those produced by terrestrial plants. These novel compounds have shown promising health benefits when incorporated into foods, including antimicrobial properties. This review aims to provide an overview of the general methods and novel compounds with antimicrobial properties recently isolated and characterized from macroalgae, emphasizing the molecular pathways of their antimicrobial mechanisms of action. The current scientific evidence on the use of macroalgae or macroalgal extracts to increase the shelf-life of foods and prevent the development of foodborne pathogens in real food products and their influence on the sensory attributes of multiple foods (i.e., meat, dairy, beverages, fish and bakery products) will also be discussed, together with the main challenges and future trends of the use of marine natural products as antimicrobials.


Asunto(s)
Antiinfecciosos/farmacología , Microbiología de Alimentos , Conservación de Alimentos , Conservantes de Alimentos/farmacología , Enfermedades Transmitidas por los Alimentos/prevención & control , Algas Marinas/metabolismo , Animales , Antiinfecciosos/aislamiento & purificación , Técnicas Bacteriológicas , Conservantes de Alimentos/aislamiento & purificación , Enfermedades Transmitidas por los Alimentos/microbiología , Humanos , Estructura Molecular , Relación Estructura-Actividad
20.
Molecules ; 26(7)2021 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-33807351

RESUMEN

Poly lactic acid (PLA) is a compostable, as well as recyclable, sustainable, versatile and environmentally friendly alternative, because the monomer of PLA-lactide (LA) is extracted from natural sources. PLA's techno-functional properties are fairly similar to fossil-based polymers; however, in pristine state, its brittleness and delicacy during processing pose challenges to its potential exploitation in diverse food packaging applications. PLA is, therefore, re-engineered to improve its thermal, rheological, barrier and mechanical properties through nanoparticle (NP) reinforcement. This review summarises the studies on PLA-based nanocomposites (PLA NCs) developed by reinforcing inorganic metal/metallic oxide, graphite and silica-based nanoparticles (NPs) that exhibit remarkable improvement in terms of storage modulus, tensile strength, crystallinity, glass transition temperature (Tg) value, antimicrobial property and a decrease in water vapour and oxygen permeability when compared with the pristine PLA films. This review has also discussed the regulations around the use of metal oxide-based NPs in food packaging, PLA NC biodegradability and their applications in food systems. The industrial acceptance of NCs shows highly promising perspectives for the replacement of traditional petrochemical-based polymers currently being used for food packaging.


Asunto(s)
Antibacterianos , Embalaje de Alimentos , Nanocompuestos/química , Poliésteres , Antibacterianos/química , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Plásticos Biodegradables , Nanopartículas , Permeabilidad , Poliésteres/química , Poliésteres/farmacología , Vapor , Resistencia a la Tracción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA