Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(46): e2302089120, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37931105

RESUMEN

Ongoing cell therapy trials have demonstrated the need for precision control of donor cell behavior within the recipient tissue. We present a methodology to guide stem cell-derived and endogenously regenerated neurons by engineering the microenvironment. Being an "approachable part of the brain," the eye provides a unique opportunity to study neuron fate and function within the central nervous system. Here, we focused on retinal ganglion cells (RGCs)-the neurons in the retina are irreversibly lost in glaucoma and other optic neuropathies but can potentially be replaced through transplantation or reprogramming. One of the significant barriers to successful RGC integration into the existing mature retinal circuitry is cell migration toward their natural position in the retina. Our in silico analysis of the single-cell transcriptome of the developing human retina identified six receptor-ligand candidates, which were tested in functional in vitro assays for their ability to guide human stem cell-derived RGCs. We used our lead molecule, SDF1, to engineer an artificial gradient in the retina, which led to a 2.7-fold increase in donor RGC migration into the ganglion cell layer (GCL) and a 3.3-fold increase in the displacement of newborn RGCs out of the inner nuclear layer. Only donor RGCs that migrated into the GCL were found to express mature RGC markers, indicating the importance of proper structure integration. Together, these results describe an "in silico-in vitro-in vivo" framework for identifying, selecting, and applying soluble ligands to control donor cell function after transplantation.


Asunto(s)
Retina , Células Ganglionares de la Retina , Recién Nacido , Humanos , Células Madre , Neurogénesis , Movimiento Celular
2.
Adv Exp Med Biol ; 1415: 577-582, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37440089

RESUMEN

Endogenous regeneration strategies to replace lost neurons hold great promise for treating neurodegenerative disorders. In the majority of cases, neural regeneration is induced by converting resident glial cells into neurogenic precursors. This review will outline how proneural bHLH transcription factors can be used to reprogram glia in the brain and retina into a source for new neurons.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Neuroglía , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular/fisiología , Neuroglía/fisiología , Regeneración Nerviosa/fisiología , Neuronas/fisiología , Retina/fisiología
3.
Glia ; 70(7): 1380-1401, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35388544

RESUMEN

Müller glia (MG) in mammalian retinas are incapable of regenerating neurons after damage, whereas the MG in lower vertebrates regenerate functional neurons. Identification of cell signaling pathways and gene regulatory networks that regulate MG-mediated regeneration is key to harnessing the regenerative potential of MG. Here, we study how NFkB-signaling influences glial responses to damage and reprogramming of MG into neurons in the rodent retina. We find activation of NFkB and dynamic expression of NFkB-associated genes in MG after damage, however damage-induced NFkB activation is inhibited by microglia ablation. Knockout of NFkB in MG suppressed the accumulation of immune cells after damage. Inhibition of NFkB following NMDA-damage significantly enhanced the reprogramming of Ascl1-overexpressing MG into neuron-like cells. scRNA-seq of retinal glia following inhibition of NFkB reveals coordination with signaling via TGFß2 and suppression of NFI and Id transcription factors. Inhibition of Smad3 signal transducer or Id transcription factors increased numbers of neuron-like cells produced by Ascl1-overexpressing MG. We conclude that NFkB is a key signaling hub that is activated in MG after damage, mediates the accumulation of immune cells, and suppresses the neurogenic potential of MG.


Asunto(s)
Células Ependimogliales , Neuroglía , Animales , Proliferación Celular/fisiología , Células Ependimogliales/metabolismo , Mamíferos/metabolismo , FN-kappa B/metabolismo , Neuroglía/metabolismo , Neuronas/metabolismo , Regeneración , Retina , Transducción de Señal , Factores de Transcripción/metabolismo
4.
Glia ; 70(4): 661-674, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34939240

RESUMEN

Ischemic preconditioning (IPC) is a phenomenon whereby a brief, non-injurious ischemic exposure enhances tolerance to a subsequent ischemic challenge. The mechanism of IPC has mainly been studied in rodent stroke models where gray matter (GM) constitutes about 85% of the cerebrum. In humans, white matter (WM) is 50% of cerebral volume and is a critical component of stroke damage. We developed a novel CNS WM IPC model using the mouse optic nerve (MON) and identified the involved immune signaling pathways. Here we tested the hypothesis that microglia are necessary for WM IPC. Microglia were depleted by treatment with the colony stimulating factor 1 receptor (CSF1R) inhibitor PLX5622. MONs were exposed to transient ischemia in vivo, acutely isolated 72 h later, and subjected to oxygen-glucose deprivation (OGD) to simulate a severe ischemic injury (i.e., stroke). Functional and structural axonal recovery was assessed by recording compound action potentials (CAPs) and by microscopy using quantitative stereology. Microglia depletion eliminated IPC-mediated protection. In control mice, CAP recovery was improved in preconditioned MONs compared with non-preconditioned MONs, however, in PLX5622-treated mice, we observed no difference in CAP recovery between preconditioned and non-preconditioned MONs. Microgliadepletion also abolished IPC protective effects on axonal integrity and survival of mature (APC+ ) oligodendrocytes after OGD. IPC-mediated protection was independent of retinal injury suggesting it results from mechanistic processes intrinsic to ischemia-exposed WM. We conclude that preconditioned microglia are critical for IPC in WM. The "preconditioned microglia" phenotype might protect against other CNS pathologies and is a neurotherapeutic horizon worth exploring.


Asunto(s)
Precondicionamiento Isquémico , Accidente Cerebrovascular , Sustancia Blanca , Animales , Corteza Cerebral/metabolismo , Precondicionamiento Isquémico/métodos , Ratones , Microglía/metabolismo , Accidente Cerebrovascular/metabolismo , Sustancia Blanca/metabolismo
5.
Development ; 143(11): 1859-73, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27068108

RESUMEN

We investigate the roles of mTor signaling in the formation of Müller glia-derived progenitor cells (MGPCs) in the chick retina. During embryonic development, pS6 (a readout of active mTor signaling) is present in early-stage retinal progenitors, differentiating amacrine and ganglion cells, and late-stage progenitors or maturing Müller glia. By contrast, pS6 is present at low levels in a few scattered cell types in mature, healthy retina. Following retinal damage, in which MGPCs are known to form, mTor signaling is rapidly activated in Müller glia. Inhibition of mTor in damaged retinas prevented the accumulation of pS6 in Müller glia and reduced numbers of proliferating MGPCs. Inhibition of mTor had no effect on MAPK signaling or on upregulation of the stem cell factor Klf4, whereas Pax6 upregulation was significantly reduced. Inhibition of mTor potently blocked the MGPC-promoting effects of Hedgehog, Wnt and glucocorticoid signaling in damaged retinas. In the absence of retinal damage, insulin, IGF1 and FGF2 induced pS6 in Müller glia, and this was blocked by mTor inhibitor. In FGF2-treated retinas, in which MGPCs are known to form, inhibition of mTor blocked the accumulation of pS6, the upregulation of Pax6 and the formation of proliferating MGPCs. We conclude that mTor signaling is required, but not sufficient, to stimulate Müller glia to give rise to proliferating progenitors, and the network of signaling pathways that drive the formation of MGPCs requires activation of mTor.


Asunto(s)
Células Ependimogliales/citología , Neuroglía/citología , Retina/metabolismo , Transducción de Señal , Células Madre/citología , Serina-Treonina Quinasas TOR/metabolismo , Animales , Movimiento Celular/efectos de los fármacos , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Proliferación Celular/efectos de los fármacos , Pollos , Células Ependimogliales/efectos de los fármacos , Células Ependimogliales/metabolismo , Factor 2 de Crecimiento de Fibroblastos/farmacología , Insulina/farmacología , Factor I del Crecimiento Similar a la Insulina/farmacología , Factor II del Crecimiento Similar a la Insulina/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Modelos Biológicos , N-Metilaspartato/farmacología , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Factor de Transcripción PAX6/metabolismo , Fosfohidrolasa PTEN/antagonistas & inhibidores , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Retina/patología , Transducción de Señal/efectos de los fármacos , Sirolimus/farmacología , Células Madre/efectos de los fármacos , Células Madre/metabolismo
6.
J Neuroinflammation ; 16(1): 118, 2019 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-31170999

RESUMEN

BACKGROUND: Microglia and inflammation have context-specific impacts upon neuronal survival in different models of central nervous system (CNS) disease. Herein, we investigate how inflammatory mediators, including microglia, interleukin 1 beta (IL1ß), and signaling through interleukin 1 receptor type 1 (IL-1R1), influence the survival of retinal neurons in response to excitotoxic damage. METHODS: Excitotoxic retinal damage was induced via intraocular injections of NMDA. Microglial phenotype and neuronal survival were assessed by immunohistochemistry. Single-cell RNA sequencing was performed to obtain transcriptomic profiles. Microglia were ablated by using clodronate liposome or PLX5622. Retinas were treated with IL1ß prior to NMDA damage and cell death was assessed in wild type, IL-1R1 null mice, and mice expressing IL-1R1 only in astrocytes. RESULTS: NMDA-induced damage included neuronal cell death, microglial reactivity, upregulation of pro-inflammatory cytokines, and genes associated with IL1ß-signaling in different types of retinal neurons and glia. Expression of the IL1ß receptor, IL-1R1, was evident in astrocytes, endothelial cells, some Müller glia, and OFF bipolar cells. Ablation of microglia with clodronate liposomes or Csf1r antagonist (PLX5622) resulted in elevated cell death and diminished neuronal survival in excitotoxin-damaged retinas. Exogenous IL1ß stimulated the proliferation and reactivity of microglia in the absence of damage, reduced numbers of dying cells in damaged retinas, and increased neuronal survival following an insult. IL1ß failed to provide neuroprotection in the IL-1R1-null retina, but IL1ß-mediated neuroprotection was rescued when expression of IL-1R1 was restored in astrocytes. CONCLUSIONS: We conclude that reactive microglia provide protection to retinal neurons, since the absence of microglia is detrimental to survival. We propose that, at least in part, the survival-influencing effects of microglia may be mediated by IL1ß, IL-1R1, and interactions of microglia and other macroglia.


Asunto(s)
Interleucina-1beta/metabolismo , Microglía/metabolismo , Neuroprotección/fisiología , Receptores Tipo I de Interleucina-1/metabolismo , Retina/patología , Animales , Agonistas de Aminoácidos Excitadores/toxicidad , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/patología , Interleucina-1beta/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/inmunología , N-Metilaspartato/toxicidad , Neurotoxinas/toxicidad , Receptores Tipo I de Interleucina-1/inmunología , Retina/inmunología
7.
Stem Cells ; 36(3): 392-405, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29193451

RESUMEN

In the retina, Müller glia have the potential to become progenitor cells with the ability to proliferate and regenerate neurons. However, the ability of Müller glia-derived progenitor cells (MGPCs) to proliferate and produce neurons is limited in higher vertebrates. Using the chick model system, we investigate how retinoic acid (RA)-signaling influences the proliferation and the formation of MGPCs. We observed an upregulation of cellular RA binding proteins (CRABP) in the Müller glia of damaged retinas where the formation of MGPCs is known to occur. Activation of RA-signaling was stimulated, whereas inhibition suppressed the proliferation of MGPCs in damaged retinas and in fibroblast growth factor 2-treated undamaged retinas. Furthermore, inhibition of RA-degradation stimulated the proliferation of MGPCs. Levels of Pax6, Klf4, and cFos were upregulated in MGPCs by RA agonists and downregulated in MGPCs by RA antagonists. Activation of RA-signaling following MGPC proliferation increased the percentage of progeny that differentiated as neurons. Similarly, the combination of RA and insulin-like growth factor 1 (IGF1) significantly increased neurogenesis from retinal progenitors in the circumferential marginal zone (CMZ). In summary, RA-signaling stimulates the formation of proliferating MGPCs and enhances the neurogenic potential of MGPCs and stem cells in the CMZ. Stem Cells 2018;36:392-405.


Asunto(s)
Células Ependimogliales/citología , Células Ependimogliales/metabolismo , Retina/citología , Retina/metabolismo , Células Madre/citología , Células Madre/metabolismo , Tretinoina/metabolismo , Animales , Neurogénesis/fisiología , Neuroglía/citología , Neuroglía/metabolismo , Transducción de Señal
8.
Development ; 142(15): 2610-22, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26116667

RESUMEN

Müller glia can be stimulated to de-differentiate and become proliferating progenitor cells that regenerate neurons in the retina. The signaling pathways that regulate the formation of proliferating Müller glia-derived progenitor cells (MGPCs) are beginning to be revealed. The purpose of this study was to investigate whether Hedgehog (Hh) signaling influences the formation of MGPCs in the chick retina. We find that Hh signaling is increased in damaged retinas where MGPCs are known to form. Sonic Hedgehog (Shh) is normally present in the axons of ganglion cells, but becomes associated with Müller glia and MGPCs following retinal damage. Activation of Hh signaling with recombinant human SHH (rhShh) or smoothened agonist (SAG) increased levels of Ptch1, Gli1, Gli2, Gli3, Hes1 and Hes5, and stimulated the formation of proliferating MGPCs in damaged retinas. In undamaged retinas, SAG or rhShh had no apparent effect upon the Müller glia. However, SAG combined with FGF2 potentiated the formation of MGPCs, whereas SAG combined with IGF1 stimulated the nuclear migration of Müller glia, but not the formation of MGPCs. Conversely, inhibition of Hh signaling with KAAD-cyclopamine, Gli antagonists or antibody to Shh reduced numbers of proliferating MGPCs in damaged and FGF2-treated retinas. Hh signaling potentiates Pax6, Klf4 and cFos expression in Müller glia during the formation of MGPCs. We find that FGF2/MAPK signaling recruits Hh signaling into the signaling network that drives the formation of proliferating MGPCs. Our findings implicate Hh signaling as a key component of the network of signaling pathways that promote the de-differentiation of Müller glia and proliferation of MGPCs.


Asunto(s)
Desdiferenciación Celular/fisiología , Células Ependimogliales/fisiología , Proteínas Hedgehog/metabolismo , Regeneración/fisiología , Retina/fisiología , Transducción de Señal/fisiología , Células Madre/fisiología , Animales , Proliferación Celular/fisiología , Embrión de Pollo , Ciclohexilaminas/metabolismo , Cartilla de ADN/genética , Humanos , Inmunohistoquímica , Hibridación in Situ , Etiquetado Corte-Fin in Situ , Factor 4 Similar a Kruppel , Reacción en Cadena de la Polimerasa , Retina/citología , Tiofenos/metabolismo
9.
Glia ; 65(10): 1640-1655, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28703293

RESUMEN

Müller glia-derived progenitor cells (MGPCs) have the capability to regenerate neurons in the retinas of different vertebrate orders. The formation of MGPCs is regulated by a network of cell-signaling pathways. The purpose of this study was to investigate how BMP/Smad1/5/8- and TGFß/Smad2/3-signaling are coordinated to influence the formation of MGPCs in the chick model system. We find that pSmad1/5/8 is selectively up-regulated in the nuclei of Müller glia following treatment with BMP4, FGF2, or NMDA-induced damage, and this up-regulation is blocked by a dorsomorphin analogue DMH1. By comparison, Smad2/3 is found in the nuclei of Müller glia in untreated retinas, and becomes localized to the cytoplasm following NMDA- or FGF2-treatment. These findings suggest a decrease in TGFß- and increase in BMP-signaling when MGPCs are known to form. In both NMDA-damaged and FGF2-treated retinas, inhibition of BMP-signaling suppressed the proliferation of MGPCs, whereas inhibition of TGFß-signaling stimulated the proliferation of MGPCs. Consistent with these findings, TGFß2 suppressed the formation of MGPCs in NMDA-damaged retinas. Our findings indicate that BMP/TGFß/Smad-signaling is recruited into the network of signaling pathways that controls the formation of proliferating MGPCs. We conclude that signaling through BMP4/Smad1/5/8 promotes the formation of MGPCs, whereas signaling through TGFß/Smad2/3 suppresses the formation of MGPCs.


Asunto(s)
Proteína Morfogenética Ósea 4/farmacología , Células Ependimogliales/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Retina/citología , Transducción de Señal/fisiología , Células Madre/metabolismo , Animales , Animales Recién Nacidos , Bromodesoxiuridina/metabolismo , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Pollos , Inhibidores Enzimáticos/farmacología , Células Ependimogliales/efectos de los fármacos , Factor 2 de Crecimiento de Fibroblastos/farmacología , Etiquetado Corte-Fin in Situ , N-Metilaspartato/toxicidad , ARN Mensajero/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/antagonistas & inhibidores , Retina/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Proteínas Smad/genética , Proteínas Smad/metabolismo , Células Madre/efectos de los fármacos , Urea/análogos & derivados , Urea/metabolismo
10.
Mol Cell Neurosci ; 69: 54-64, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26500021

RESUMEN

Müller glia can be stimulated to de-differentiate, proliferate and form Müller glia-derived progenitor cells (MGPCs) that regenerate retinal neurons. In the zebrafish retina, heparin-binding EGF-like growth factor (HB-EGF) may be one of the key factors that stimulate the formation of proliferating MGPCs. Currently nothing is known about the influence of HB-EGF on the proliferative potential of Müller glia in retinas of birds and rodents. In the chick retina, we found that levels of both hb-egf and egf-receptor are rapidly and transiently up-regulated following NMDA-induced damage. Although intraocular injections of HB-EGF failed to stimulate cell-signaling or proliferation of Müller glia in normal retinas, HB-EGF stimulated proliferation of MGPCs in damaged retinas. By comparison, inhibition of the EGF-receptor (EGFR) decreased the proliferation of MGPCs in damaged retinas. HB-EGF failed to act synergistically with FGF2 to stimulate the formation of MGPCs in the undamaged retina and inhibition of EGF-receptor did not suppress FGF2-mediated formation of MGPCs. In the mouse retina, HB-EGF stimulated the proliferation of Müller glia following NMDA-induced damage. Furthermore, HB-EGF not only stimulated MAPK-signaling in Müller glia/MGPCs, but also activated mTor- and Jak/Stat-signaling. We propose that levels of expression of EGFR are rate-limiting to the responses of Müller glia to HB-EGF and the expression of EGFR can be induced by retinal damage, but not by FGF2-treatment. We conclude that HB-EGF is mitogenic to Müller glia in both chick and mouse retinas, and HB-EGF is an important player in the formation of MGPCs in damaged retinas.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Células Ependimogliales/efectos de los fármacos , Factor de Crecimiento Similar a EGF de Unión a Heparina/farmacología , Neuroglía/efectos de los fármacos , Retina/citología , Retina/efectos de los fármacos , Animales , Pollos , Células Ependimogliales/citología , Ratones Endogámicos C57BL , Neuroglía/citología , Transducción de Señal/efectos de los fármacos , Células Madre/metabolismo , Pez Cebra
11.
Glia ; 62(10): 1608-28, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24916856

RESUMEN

In retinas where Müller glia have been stimulated to become progenitor cells, reactive microglia are always present. Thus, we investigated how the activation or ablation of microglia/macrophage influences the formation of Müller glia-derived progenitor cells (MGPCs) in the retina in vivo. Intraocular injections of the Interleukin-6 (IL6) stimulated the reactivity of microglia/macrophage, whereas other types of retinal glia appear largely unaffected. In acutely damaged retinas where all of the retinal microglia/macrophage were ablated, the formation of proliferating MGPCs was greatly diminished. With the microglia ablated in damaged retinas, levels of Notch and related genes were unchanged or increased, whereas levels of ascl1a, TNFα, IL1ß, complement component 3 (C3) and C3a receptor were significantly reduced. In the absence of retinal damage, the combination of insulin and Fibroblast growth factor 2 (FGF2) failed to stimulate the formation of MGPCs when the microglia/macrophage were ablated. In addition, intraocular injections of IL6 and FGF2 stimulated the formation of MGPCs in the absence of retinal damage, and this generation of MGPCs was blocked when the microglia/macrophage were absent. We conclude that the activation of microglia and/or infiltrating macrophage contributes to the formation of proliferating MGPCs, and these effects may be mediated by components of the complement system and inflammatory cytokines.


Asunto(s)
Células Ependimogliales/fisiología , Macrófagos/fisiología , Microglía/fisiología , Células-Madre Neurales/fisiología , Animales , Proteínas Aviares/metabolismo , Proliferación Celular/fisiología , Pollos , Complemento C3/metabolismo , Agonistas de Aminoácidos Excitadores/toxicidad , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Insulina/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , N-Metilaspartato/toxicidad , Receptores de Complemento/metabolismo , Receptores Notch/metabolismo , Retina/lesiones , Retina/fisiopatología , Factor de Necrosis Tumoral alfa/metabolismo
12.
Exp Eye Res ; 123: 121-30, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23851023

RESUMEN

This article reviews the current state of knowledge regarding the potential of Müller glia to become neuronal progenitor cells in the avian retina. We compare and contrast the remarkable proliferative and neurogenic capacity of Müller glia in the fish retina to the limited capacity of Müller glia in avian and rodent retinas. We summarize recent findings regarding the secreted factors, signaling pathways and cell intrinsic factors that have been implicated in the formation of Müller glia-derived progenitors. We discuss several key similarities and differences between the fish, rodent and chick model systems, highlighting several of the key transcription factors and signaling pathways that regulate the formation of Müller glia-derived progenitors.


Asunto(s)
Células Ependimogliales/fisiología , Regeneración/fisiología , Retina/fisiología , Animales , Diferenciación Celular/fisiología , Proliferación Celular , Humanos , Transducción de Señal/fisiología
13.
bioRxiv ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37808650

RESUMEN

Retinal degeneration in mammals causes permanent loss of vision, due to an inability to regenerate naturally. Some non-mammalian vertebrates show robust regeneration, via Muller glia (MG). We have recently made significant progress in stimulating adult mouse MG to regenerate functional neurons by transgenic expression of the proneural transcription factor Ascl1. While these results showed that MG can serve as an endogenous source of neuronal replacement, the efficacy of this process is limited. With the goal of improving this in mammals, we designed a small molecule screen using sci-Plex, a method to multiplex up to thousands of single nucleus RNA-seq conditions into a single experiment. We used this technology to screen a library of 92 compounds, identified, and validated two that promote neurogenesis in vivo. Our results demonstrate that high-throughput single-cell molecular profiling can substantially improve the discovery process for molecules and pathways that can stimulate neural regeneration and further demonstrate the potential for this approach to restore vision in patients with retinal disease.

15.
Artículo en Inglés | MEDLINE | ID: mdl-34580118

RESUMEN

The regenerative capacity of the vertebrate retina varies substantially across species. Whereas fish and amphibians can regenerate functional retina, mammals do not. In this perspective piece, we outline the various strategies nonmammalian vertebrates use to achieve functional regeneration of vision. We review key differences underlying the regenerative potential across species including the cellular source of postnatal progenitors, the diversity of cell fates regenerated, and the level of functional vision that can be achieved. Finally, we provide an outlook on the field of engineering the mammalian retina to replace neurons lost to injury or disease.


Asunto(s)
Reprogramación Celular , Vertebrados , Animales , Biología , Mamíferos , Regeneración Nerviosa/fisiología , Retina/fisiología
16.
Sci Adv ; 8(47): eabq7219, 2022 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-36417510

RESUMEN

Many neurodegenerative diseases cause degeneration of specific types of neurons. For example, glaucoma leads to death of retinal ganglion cells, leaving other neurons intact. Neurons are not regenerated in the adult mammalian central nervous system. However, in nonmammalian vertebrates, glial cells spontaneously reprogram into neural progenitors and replace neurons after injury. We have recently developed strategies to stimulate regeneration of functional neurons in the adult mouse retina by overexpressing the proneural factor Ascl1 in Müller glia. Here, we test additional transcription factors (TFs) for their ability to direct regeneration to particular types of retinal neurons. We engineered mice to express different combinations of TFs in Müller glia, including Ascl1, Pou4f2, Islet1, and Atoh1. Using immunohistochemistry, single-cell RNA sequencing, single-cell assay for transposase-accessible chromatin sequencing, and electrophysiology, we find that retinal ganglion-like cells can be regenerated in the damaged adult mouse retina in vivo with targeted overexpression of developmental retinal ganglion cell TFs.


Asunto(s)
Retina , Factores de Transcripción , Ratones , Animales , Factores de Transcripción/genética , Neuroglía , Neuronas , Mamíferos
17.
Cell Rep ; 37(3): 109857, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34686336

RESUMEN

Regenerative neuroscience aims to stimulate endogenous repair in the nervous system to replace neurons lost from degenerative diseases. Recently, we reported that overexpressing the transcription factor Ascl1 in Müller glia (MG) is sufficient to stimulate MG to regenerate functional neurons in the adult mouse retina. However, this process is inefficient, and only a third of the Ascl1-expressing MG generate new neurons. Here, we test whether proneural transcription factors of the Atoh1/7 class can further promote the regenerative capacity of MG. We find that the combination of Ascl1:Atoh1 is remarkably efficient at stimulating neurogenesis, even in the absence of retinal injury. Using electrophysiology and single-cell RNA sequencing (scRNA-seq), we demonstrate that Ascl1:Atoh1 generates a diversity of retinal neuron types, with the majority expressing characteristics of retinal ganglion cells. Our results provide a proof of principle that combinations of developmental transcription factors can substantially improve glial reprogramming to neurons and expand the repertoire of regenerated cell fates.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Células Ependimogliales/metabolismo , Regeneración Nerviosa , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis , Retina/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Células Cultivadas , Células Ependimogliales/patología , Femenino , Regulación de la Expresión Génica , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Fenotipo , RNA-Seq , Retina/patología , Transducción de Señal , Análisis de la Célula Individual
18.
Cell Rep ; 33(11): 108507, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33326790

RESUMEN

The innate immune system plays key roles in tissue regeneration. For example, microglia promote neurogenesis in Müller glia in birds and fish after injury. Although mammalian retina does not normally regenerate, neurogenesis can be induced in mouse Müller glia by Ascl1, a proneural transcription factor. We show that in mice, microglia inhibit the Ascl1-mediated retinal regeneration, suggesting that the innate immune system limits the regenerative response to injury.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Microglía/inmunología , Regeneración Nerviosa/inmunología , Retina/fisiopatología , Animales , Ratones
19.
Cell Rep ; 30(7): 2195-2208.e5, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32075759

RESUMEN

Müller glia (MG) serve as sources for retinal regeneration in non-mammalian vertebrates. We find that this process can be induced in mouse MG, after injury, by transgenic expression of the proneural transcription factor Ascl1 and the HDAC inhibitor TSA. However, new neurons are generated only from a subset of MG. Identifying factors that limit Ascl1-mediated MG reprogramming could make this process more efficient. In this study, we test whether injury-induced STAT activation hampers the ability of Ascl1 to reprogram MG into retinal neurons. Single-cell RNA-seq shows that progenitor-like cells derived from Ascl1-expressing MG have a higher level of STAT signaling than do those cells that become neurons. Ascl1-ChIPseq and ATAC-seq show that STAT potentially directs Ascl1 to developmentally inappropriate targets. Using a STAT inhibitor, in combination with our previously described reprogramming paradigm, we found a large increase in the ability of MG to generate neurons.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Cromatina/metabolismo , Regeneración Nerviosa/fisiología , Neuroglía/fisiología , Neuronas/metabolismo , Factores de Transcripción STAT/metabolismo , Animales , Diferenciación Celular/fisiología , Ratones , Ratones Endogámicos C57BL , Neurogénesis , Transducción de Señal
20.
Science ; 370(6519)2020 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-33004674

RESUMEN

Injury induces retinal Müller glia of certain cold-blooded vertebrates, but not those of mammals, to regenerate neurons. To identify gene regulatory networks that reprogram Müller glia into progenitor cells, we profiled changes in gene expression and chromatin accessibility in Müller glia from zebrafish, chick, and mice in response to different stimuli. We identified evolutionarily conserved and species-specific gene networks controlling glial quiescence, reactivity, and neurogenesis. In zebrafish and chick, the transition from quiescence to reactivity is essential for retinal regeneration, whereas in mice, a dedicated network suppresses neurogenic competence and restores quiescence. Disruption of nuclear factor I transcription factors, which maintain and restore quiescence, induces Müller glia to proliferate and generate neurons in adult mice after injury. These findings may aid in designing therapies to restore retinal neurons lost to degenerative diseases.


Asunto(s)
Reprogramación Celular/genética , Células Ependimogliales/citología , Redes Reguladoras de Genes , Regeneración Nerviosa/genética , Neurogénesis/genética , Animales , Pollos , Regulación del Desarrollo de la Expresión Génica , Ratones , RNA-Seq , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA