Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Virol ; 98(9): e0063924, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39132992

RESUMEN

There are four genogroups and 18 genotypes of human sapoviruses (HuSaVs) responsible for acute gastroenteritis. To comprehend their antigenic and virological differences, it is crucial to obtain viral stocks of the different strains. Previously, we utilized the human duodenum-derived cell line HuTu80, and glycocholate, a conjugated bile acid, to replicate and propagate GI.1, GI.2, and GII.3 HuSaVs (H. Takagi et al., Proc Natl Acad Sci U S A 117:32078-32085, 2020, https://10.1073/pnas.2007310117). First, we investigated the impact of HuTu80 passage number on HuSaV propagation. Second, we demonstrated that taurocholate improved the initial replication success rate and viral RNA levels in fecal specimens relative to glycocholate. By propagating 15 HuSaV genotypes (GI.1-7, GII.1-5, -8, and GV.1-2) and accomplishing preparation of viral stocks containing 1.0 × 109 to 3.4 × 1011 viral genomic copies/mL, we found that all strains required bile acids for replication, with GII.4 showing strict requirements for taurocholate. The deduced VP1 sequences of the viruses during the scale-up of serial passaged virus cultures were either identical or differed by only two amino acids from the original sequences in feces. In addition, we purified virions from nine strains of different genotypes and used them as immunogens for antiserum production. Enzyme-linked immunosorbent assays (ELISAs) using rabbit and guinea pig antisera for each of the 15 strains of different genotypes revealed distinct antigenicity among the propagating viruses across genogroups and differences between genotypes. Acquisition of biobanked viral resources and determination of key culture conditions will be valuable to gain insights into the common mechanisms of HuSaV infection. IMPORTANCE: The control of human sapovirus, which causes acute gastroenteritis in individuals of all ages, is challenging because of its association with outbreaks similar to those caused by human norovirus. The establishment of conditions for efficient viral propagation of various viral strains is essential for understanding the infection mechanism and identifying potential control methods. In this study, two critical factors for human sapovirus propagation in a conventional human duodenal cell line were identified, and 15 strains of different genotypes that differed at the genetic and antigenic levels were isolated and used to prepare virus stocks. The preparation of virus stocks has not been successful for noroviruses, which belong to the same family as sapoviruses. Securing virus stocks of multiple human sapovirus strains represents a significant advance toward establishing a reliable experimental system that does not depend on limited virus-positive fecal material.


Asunto(s)
Infecciones por Caliciviridae , Duodeno , Genotipo , Sapovirus , Replicación Viral , Sapovirus/genética , Humanos , Duodeno/virología , Duodeno/inmunología , Línea Celular , Animales , Infecciones por Caliciviridae/virología , Infecciones por Caliciviridae/inmunología , Gastroenteritis/virología , Antígenos Virales/inmunología , Antígenos Virales/genética , Heces/virología , Conejos , Cobayas , Variación Genética , ARN Viral/genética , Cultivo de Virus , Ácidos y Sales Biliares
2.
Foodborne Pathog Dis ; 12(2): 131-8, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25646967

RESUMEN

Vibrio parahaemolyticus carrying the tdh gene, encoding the thermostable direct hemolysin (TDH), or the trh gene, encoding the TDH-related hemolysin (TRH), are both considered virulent strains. There are, however, disproportionally fewer reports of infections caused by seafood contaminated with trh-positive strains than by seafood contaminated with tdh-positive strains. Bivalves such as clams and oysters are the major seafood varieties associated with the infections. In this study, the prevalence of strains possessing the tdh and trh genes was investigated in Japan in 74 samples collected in 2007-2008 and in 177 samples collected in 2010 of domestic bivalves, bloody clams, hen clams, short-neck clams, and rock oysters. The tdh-positive and trh-negative, tdh-negative and trh-positive, and tdh-positive and trh-positive samples represented 5.4%, 12.2%, and 4.1% of all samples collected in 2007-2008, and 5.1%, 18.6%, and 5.6% of all samples collected in 2010, respectively. As determined by polymerase chain reaction, the prevalence of tdh negative and trh positive in all samples was two to four times higher than that of tdh positive and trh negative. In the samples collected in 2010, the tdh-negative and trh-positive V. parahaemolyticus (20 samples) was more often isolated than tdh-positive and trh-negative V. parahaemolyticus (7 samples). The most common serotype of tdh-positive isolates (22 of 24 strains) was pandemic O3:K6. The trh-positive isolates (61 strains) were various serotypes including OUT:KUT. In 330 V. parahaemolyticus outbreaks and sporadic infections in Japan, most outbreaks and sporadic infections were caused by tdh-positive and trh-negative strains (89.4%). The frequencies of infections caused by tdh-negative and trh-positive, and both tdh- and trh-positive strains were 1.2% and 3.0%, respectively. This finding suggests that the virulence of trh might be less than that of tdh, although trh-positive V. parahaemolyticus frequently contaminated bivalves.


Asunto(s)
Proteínas Bacterianas/toxicidad , Bivalvos/microbiología , Proteínas Hemolisinas/toxicidad , Intoxicación por Mariscos/etiología , Mariscos/efectos adversos , Vibrio parahaemolyticus/patogenicidad , Factores de Virulencia/análisis , Animales , Arcidae/microbiología , Proteínas Bacterianas/análisis , Proteínas Bacterianas/química , Toxinas Bacterianas/análisis , Toxinas Bacterianas/química , Toxinas Bacterianas/toxicidad , Crassostrea/microbiología , Brotes de Enfermedades , Electroforesis en Gel de Campo Pulsado , Proteínas Hemolisinas/análisis , Proteínas Hemolisinas/química , Calor , Humanos , Japón/epidemiología , Tipificación Molecular , Reacción en Cadena de la Polimerasa , Estabilidad Proteica , Mariscos/análisis , Mariscos/economía , Mariscos/microbiología , Intoxicación por Mariscos/epidemiología , Intoxicación por Mariscos/microbiología , Vibriosis/epidemiología , Vibriosis/microbiología , Vibrio parahaemolyticus/clasificación , Vibrio parahaemolyticus/crecimiento & desarrollo , Vibrio parahaemolyticus/aislamiento & purificación , Virulencia , Factores de Virulencia/química
4.
Arch Virol ; 157(10): 1999-2003, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22772483

RESUMEN

Sapovirus (SaV) is an important pathogen that causes acute gastroenteritis in humans. Human SaV is highly diverse genetically and is classified into multiple genogroups and genotypes. At present, there is no clear evidence for gastroenteritis cases caused by re-infection with SaV. We found that two individuals were sequentially infected with SaVs of two different genogroups and had gastroenteritis after each infection, although in one of the subsequent cases, both SaV and norovirus were detected. We also found a genetic shift in SaVs from gastroenteritis outpatients in the same geographical location. Our results suggest that protective immunity may be at least genogroup-specific for SaV.


Asunto(s)
Infecciones por Caliciviridae/virología , Evolución Molecular , Gastroenteritis/virología , Sapovirus/clasificación , Sapovirus/genética , Infecciones por Caliciviridae/inmunología , Niño , Preescolar , Heces/virología , Femenino , Gastroenteritis/inmunología , Genotipo , Humanos , Lactante , Masculino , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa/métodos , Sapovirus/aislamiento & purificación , Análisis de Secuencia de ADN , Especificidad de la Especie
5.
Genome Biol Evol ; 7(12): 3170-9, 2015 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-26537224

RESUMEN

Escherichia albertii is a recently recognized close relative of Escherichia coli. This emerging enteropathogen possesses a type III secretion system (T3SS) encoded by the locus of enterocyte effacement, similar to enteropathogenic and enterohemorrhagic E. coli (EPEC and EHEC). Shiga toxin-producing strains have also been identified. The genomic features of E. albertii, particularly differences from other Escherichia species, have not yet been well clarified. Here, we sequenced the genome of 29 E. albertii strains (3 complete and 26 draft sequences) isolated from multiple sources and performed intraspecies and intragenus genomic comparisons. The sizes of the E. albertii genomes range from 4.5 to 5.1 Mb, smaller than those of E. coli strains. Intraspecies genomic comparisons identified five phylogroups of E. albertii. Intragenus genomic comparison revealed that the possible core genome of E. albertii comprises 3,250 genes, whereas that of the genus Escherichia comprises 1,345 genes. Our analysis further revealed several unique or notable genetic features of E. albertii, including those responsible for known biochemical features and virulence factors and a possibly active second T3SS known as ETT2 (E. coli T3SS 2) that is inactivated in E. coli. Although this organism has been observed to be nonmotile in vitro, genes for flagellar biosynthesis are fully conserved; chemotaxis-related genes have been selectively deleted. Based on these results, we have developed a nested polymerase chain reaction system to directly detect E. albertii. Our data define the genomic features of E. albertii and provide a valuable basis for future studies of this important emerging enteropathogen.


Asunto(s)
Escherichia coli Enteropatógena/genética , Genoma Bacteriano , Secuencia de Bases , Escherichia coli Enteropatógena/aislamiento & purificación , Escherichia coli Enteropatógena/patogenicidad , Transferencia de Gen Horizontal , Datos de Secuencia Molecular , Virulencia/genética
6.
Shokuhin Eiseigaku Zasshi ; 54(3): 198-203, 2013.
Artículo en Japonés | MEDLINE | ID: mdl-23863364

RESUMEN

More than 27 outbreaks per year of food poisoning caused by consuming horse meat were reported in Kumamoto Prefecture (including Kumamoto City) from January 2009 to September 2011. It was found that the causative agent of the outbreaks was a protein with a molecular weight of 15 kDa that had originated from bradyzoites of Sarcocystis fayeri parasitizing the horse meat. Rabit ileal loop tests showed that pepsin treatment of homogenates of frozen horse meat containing the cysts of S. fayeri induced loss of toxicity, presumably by digestion of the proteinous causative agent(s). Slices of horse meat containing the cysts were frozen at below -20°C for various periods. The cysts were collected after thawing the slices, then treated in an artificial stomach juice containing pepsin. The bradyzoites of the cysts kept at -20°C for 48 hr or more completely disappeared. Simultaneously, the 15 kDa protein also disappeared in the frozen cysts. After notifying the public and recommending freezing treatment of horse meat, no subsequent cases of food poisoning were reported. This indicates that freezing of horse meat is effective to prevent the occurrence of food poisoning caused by consuming raw horse meat containing S. fayeri.


Asunto(s)
Manipulación de Alimentos/métodos , Enfermedades Transmitidas por los Alimentos/prevención & control , Enfermedades Transmitidas por los Alimentos/parasitología , Congelación , Carne/envenenamiento , Carne/parasitología , Sarcocystis/patogenicidad , Sarcocistosis/prevención & control , Sarcocistosis/parasitología , Animales , Enfermedades Transmitidas por los Alimentos/epidemiología , Caballos , Humanos , Japón/epidemiología , Conejos , Sarcocystis/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA