Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Rev Sci Instrum ; 93(12): 125002, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36586950

RESUMEN

This paper describes a technique for temperature sensitivity or thermal sag measurements of a geometric anti-spring based microelectromechanical system (MEMS) gravimeter (Wee-g). The Wee-g MEMS gravimeter is currently fabricated on a (100) silicon wafer using standard micro-nano fabrication techniques. The thermal behavior of silicon indicates that the Young's modulus of silicon decreases with increase in temperature (∼64 ppm/K). This leads to a softening of the silicon material, resulting in the proof mass displacing (or sagging) under the influence of increasing temperature. It results in a change in the measured gravity, which is expressed as temperature sensitivity in terms of change in gravity per degree temperature. The temperature sensitivity for the silicon based MEMS gravimeter is found to be 60.14-64.87, 61.76, and 62.76 µGal/mK for experimental, finite element analysis (FEA) simulation, and analytical calculations, respectively. It suggests that the gravimeter's temperature sensitivity is dependent on the material properties used to fabricate the MEMS devices. In this paper, the experimental measurements of thermal sag are presented along with analytical calculations and simulations of the effect using FEA. The bespoke optical measurement system to quantify the thermal sag is also described. The results presented are an essential step toward the development of temperature insensitive MEMS gravimeters.

2.
Sci Rep ; 12(1): 13091, 2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35906251

RESUMEN

The measurement of tiny variations in local gravity enables the observation of subterranean features. Gravimeters have historically been extremely expensive instruments, but usable gravity measurements have recently been conducted using MEMS (microelectromechanical systems) sensors. Such sensors are cheap to produce, since they rely on the same fabrication techniques used to produce mobile phone accelerometers. A significant challenge in the development of MEMS gravimeters is maintaining stability over long time periods, which is essential for long term monitoring applications. A standard way to demonstrate gravimeter stability and sensitivity is to measure the periodic elastic distortion of the Earth due to tidal forces-the Earth tides. Here, a 19 day measurement of the Earth tides, with a correlation coefficient to the theoretical signal of 0.975, has been presented. This result demonstrates that this MEMS gravimeter is capable of conducting long-term time-lapse gravimetry, a functionality essential for applications such as volcanology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA