RESUMEN
Prognostically relevant RNA expression states exist in pancreatic ductal adenocarcinoma (PDAC), but our understanding of their drivers, stability, and relationship to therapeutic response is limited. To examine these attributes systematically, we profiled metastatic biopsies and matched organoid models at single-cell resolution. In vivo, we identify a new intermediate PDAC transcriptional cell state and uncover distinct site- and state-specific tumor microenvironments (TMEs). Benchmarking models against this reference map, we reveal strong culture-specific biases in cancer cell transcriptional state representation driven by altered TME signals. We restore expression state heterogeneity by adding back in vivo-relevant factors and show plasticity in culture models. Further, we prove that non-genetic modulation of cell state can strongly influence drug responses, uncovering state-specific vulnerabilities. This work provides a broadly applicable framework for aligning cell states across in vivo and ex vivo settings, identifying drivers of transcriptional plasticity and manipulating cell state to target associated vulnerabilities.
Asunto(s)
Biomarcadores de Tumor/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/metabolismo , Microambiente Tumoral , Adulto , Anciano , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Análisis de la Célula IndividualRESUMEN
Coordinated induction, but also repression, of genes are key to normal differentiation. Although the role of lineage-specific transcription regulators has been studied extensively, their functional integration with chromatin remodelers, one of the key enzymatic machineries that control chromatin accessibility, remains ill-defined. Here we investigate the role of Mi-2ß, a SNF-2-like nucleosome remodeler and key component of the nucleosome remodeling and histone deacetylase (NuRD) complex in early B cells. Inactivation of Mi-2ß arrested differentiation at the large pre-B-cell stage and caused derepression of cell adhesion and cell migration signaling factors by increasing chromatin access at poised enhancers and chromosome architectural elements. Mi-2ß also supported IL-7R signaling, survival, and proliferation by repressing negative effectors of this pathway. Importantly, overexpression of Bcl2, a mitochondrial prosurvival gene and target of IL-7R signaling, partly rescued the differentiation block caused by Mi-2ß loss. Mi-2ß stably associated with chromatin sites that harbor binding motifs for IKAROS and EBF1 and physically associated with these transcription factors both on and off chromatin. Notably, Mi-2ß shared loss-of-function cellular and molecular phenotypes with IKAROS and EBF1, albeit in a distinct fashion. Thus, the nucleosome remodeler Mi-2ß promotes pre-B-cell differentiation by providing repression capabilities to distinct lineage-specific transcription factor-based regulatory networks.
Asunto(s)
Linfocitos B/citología , Diferenciación Celular/genética , Cromatina/metabolismo , ADN Helicasas/genética , ADN Helicasas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Animales , Linaje de la Célula , Proliferación Celular/genética , Supervivencia Celular/genética , Células Cultivadas , Ratones , Factores de TranscripciónRESUMEN
More than 90% of small cell lung cancers (SCLCs) harbor loss-of-function mutations in the tumor suppressor gene RB1 The canonical function of the RB1 gene product, pRB, is to repress the E2F transcription factor family, but pRB also functions to regulate cellular differentiation in part through its binding to the histone demethylase KDM5A (also known as RBP2 or JARID1A). We show that KDM5A promotes SCLC proliferation and SCLC's neuroendocrine differentiation phenotype in part by sustaining expression of the neuroendocrine transcription factor ASCL1. Mechanistically, we found that KDM5A sustains ASCL1 levels and neuroendocrine differentiation by repressing NOTCH2 and NOTCH target genes. To test the role of KDM5A in SCLC tumorigenesis in vivo, we developed a CRISPR/Cas9-based mouse model of SCLC by delivering an adenovirus (or an adeno-associated virus [AAV]) that expresses Cre recombinase and sgRNAs targeting Rb1, Tp53, and Rbl2 into the lungs of Lox-Stop-Lox Cas9 mice. Coinclusion of a KDM5A sgRNA decreased SCLC tumorigenesis and metastasis, and the SCLCs that formed despite the absence of KDM5A had higher NOTCH activity compared to KDM5A+/+ SCLCs. This work establishes a role for KDM5A in SCLC tumorigenesis and suggests that KDM5 inhibitors should be explored as treatments for SCLC.
Asunto(s)
Diferenciación Celular/genética , Células Neuroendocrinas/citología , Receptores Notch/fisiología , Proteína 2 de Unión a Retinoblastoma/metabolismo , Transducción de Señal/genética , Carcinoma Pulmonar de Células Pequeñas/enzimología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Línea Celular , Transformación Celular Neoplásica/genética , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica/genética , Histona Demetilasas/metabolismo , Humanos , Técnicas In Vitro , Ratones , Células Neuroendocrinas/patología , Carcinoma Pulmonar de Células Pequeñas/fisiopatologíaRESUMEN
Prostaglandin E2 (PGE2) and 16,16-dimethyl-PGE2 (dmPGE2) are important regulators of hematopoietic stem and progenitor cell (HSPC) fate and offer potential to enhance stem cell therapies [C. Cutler et al. Blood 122, 3074-3081(2013); W. Goessling et al. Cell Stem Cell 8, 445-458 (2011); W. Goessling et al. Cell 136, 1136-1147 (2009)]. Here, we report that PGE2-induced changes in chromatin at enhancer regions through histone-variant H2A.Z permit acute inflammatory gene induction to promote HSPC fate. We found that dmPGE2-inducible enhancers retain MNase-accessible, H2A.Z-variant nucleosomes permissive of CREB transcription factor (TF) binding. CREB binding to enhancer nucleosomes following dmPGE2 stimulation is concomitant with deposition of histone acetyltransferases p300 and Tip60 on chromatin. Subsequent H2A.Z acetylation improves chromatin accessibility at stimuli-responsive enhancers. Our findings support a model where histone-variant nucleosomes retained within inducible enhancers facilitate TF binding. Histone-variant acetylation by TF-associated nucleosome remodelers creates the accessible nucleosome landscape required for immediate enhancer activation and gene induction. Our work provides a mechanism through which inflammatory mediators, such as dmPGE2, lead to acute transcriptional changes and modify HSPC behavior to improve stem cell transplantation.
Asunto(s)
Histonas , Nucleosomas , Histonas/metabolismo , Cromatina , Dinoprostona , Secuencias Reguladoras de Ácidos Nucleicos , Ensamble y Desensamble de CromatinaRESUMEN
Activation of transcription requires alteration of chromatin by complexes that increase the accessibility of nucleosomal DNA. Removing nucleosomes from regulatory sequences has been proposed to play a significant role in activation. We tested whether changes in nucleosome occupancy occurred on the set of genes that is activated by the unfolded protein response (UPR). We observed no decrease in occupancy on most promoters, gene bodies, and enhancers. Instead, there was an increase in the accessibility of nucleosomes, as measured by micrococcal nuclease (MNase) digestion and ATAC-seq (assay for transposase-accessible chromatin [ATAC] using sequencing), that did not result from removal of the nucleosome. Thus, changes in nucleosome accessibility predominate over changes in nucleosome occupancy during rapid transcriptional induction during the UPR.
Asunto(s)
Regulación de la Expresión Génica , Nucleosomas/metabolismo , Respuesta de Proteína Desplegada/fisiología , Animales , Línea Celular , Cromatina/química , Cromatina/metabolismo , Mapeo Cromosómico , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Elementos de Facilitación Genéticos/genética , Nucleasa Microcócica/metabolismo , Nucleosomas/química , Regiones Promotoras Genéticas/genética , Unión ProteicaRESUMEN
The conserved histone locus body (HLB) assembles prior to zygotic gene activation early during development and concentrates factors into a nuclear domain of coordinated histone gene regulation. Although HLBs form specifically at replication-dependent histone loci, the cis and trans factors that target HLB components to histone genes remained unknown. Here we report that conserved GA repeat cis elements within the bidirectional histone3-histone4 promoter direct HLB formation in Drosophila In addition, the CLAMP (chromatin-linked adaptor for male-specific lethal [MSL] proteins) zinc finger protein binds these GA repeat motifs, increases chromatin accessibility, enhances histone gene transcription, and promotes HLB formation. We demonstrated previously that CLAMP also promotes the formation of another domain of coordinated gene regulation: the dosage-compensated male X chromosome. Therefore, CLAMP binding to GA repeat motifs promotes the formation of two distinct domains of coordinated gene activation located at different places in the genome.
Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Regulación del Desarrollo de la Expresión Génica , Sitios Genéticos , Histonas/genética , Animales , Secuencia de Bases , Cromatina/metabolismo , Secuencia Conservada , ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Histonas/metabolismo , Regiones Promotoras Genéticas , Secuencias Repetitivas de Ácidos Nucleicos , Factores de Transcripción/metabolismoRESUMEN
BACKGROUND: Functional profiling of freshly isolated glioblastoma (GBM) cells is being evaluated as a next-generation method for precision oncology. While promising, its success largely depends on the method to evaluate treatment activity which requires sufficient resolution and specificity. METHODS: Here, we describe the 'precision oncology by single-cell profiling using ex vivo readouts of functionality' (PROSPERO) assay to evaluate the intrinsic susceptibility of high-grade brain tumor cells to respond to therapy. Different from other assays, PROSPERO extends beyond life/death screening by rapidly evaluating acute molecular drug responses at single-cell resolution. RESULTS: The PROSPERO assay was developed by correlating short-term single-cell molecular signatures using mass cytometry by time-of-flight (CyTOF) to long-term cytotoxicity readouts in representative patient-derived glioblastoma cell cultures (n = 14) that were exposed to radiotherapy and the small-molecule p53/MDM2 inhibitor AMG232. The predictive model was subsequently projected to evaluate drug activity in freshly resected GBM samples from patients (n = 34). Here, PROSPERO revealed an overall limited capacity of tumor cells to respond to therapy, as reflected by the inability to induce key molecular markers upon ex vivo treatment exposure, while retaining proliferative capacity, insights that were validated in patient-derived xenograft (PDX) models. This approach also allowed the investigation of cellular plasticity, which in PDCLs highlighted therapy-induced proneural-to-mesenchymal (PMT) transitions, while in patients' samples this was more heterogeneous. CONCLUSION: PROSPERO provides a precise way to evaluate therapy efficacy by measuring molecular drug responses using specific biomarker changes in freshly resected brain tumor samples, in addition to providing key functional insights in cellular behavior, which may ultimately complement standard, clinical biomarker evaluations.
Asunto(s)
Antineoplásicos , Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/patología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Medicina de Precisión , Antineoplásicos/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto , Línea Celular TumoralRESUMEN
The mammalian cortex is populated by neurons derived from neural progenitors located throughout the embryonic telencephalon. Excitatory neurons are derived from the dorsal telencephalon, whereas inhibitory interneurons are generated in its ventral portion. The transcriptional regulator PRDM16 is expressed by radial glia, neural progenitors present in both regions; however, its mechanisms of action are still not fully understood. It is unclear whether PRDM16 plays a similar role in neurogenesis in both dorsal and ventral progenitor lineages and, if so, whether it regulates common or unique networks of genes. Here, we show that Prdm16 expression in mouse medial ganglionic eminence (MGE) progenitors is required for maintaining their proliferative capacity and for the production of proper numbers of forebrain GABAergic interneurons. PRDM16 binds to cis-regulatory elements and represses the expression of region-specific neuronal differentiation genes, thereby controlling the timing of neuronal maturation. PRDM16 regulates convergent developmental gene expression programs in the cortex and MGE, which utilize both common and region-specific sets of genes to control the proliferative capacity of neural progenitors, ensuring the generation of correct numbers of cortical neurons.
Asunto(s)
Corteza Cerebral/metabolismo , Proteínas de Unión al ADN/metabolismo , Neuronas GABAérgicas/metabolismo , Interneuronas/metabolismo , Células-Madre Neurales/metabolismo , Factores de Transcripción/metabolismo , Animales , Corteza Cerebral/citología , Proteínas de Unión al ADN/genética , Neuronas GABAérgicas/citología , Interneuronas/citología , Ratones , Células-Madre Neurales/citología , Factores de Transcripción/genéticaRESUMEN
Developing lymphocytes diversify their antigen receptor (AgR) loci by variable (diversity) joining (V[D]J) recombination. Here, using the micrococcal nuclease (MNase)-based chromatin accessibility (MACC) assay with low-cell count input, we profile both small-scale (kilobase) and large-scale (megabase) changes in chromatin accessibility and nucleosome occupancy in primary cells during lymphoid development, tracking the changes as different AgR loci become primed for recombination. The three distinct chromatin structures identified in this work define unique features of immunoglobulin H (IgH), Igκ, and T cell receptor-α (TCRα) loci during B lymphopoiesis. In particular, we find locus-specific temporal changes in accessibility both across megabase-long AgR loci and locally at the recombination signal sequences (RSSs). These changes seem to be regulated independently and can occur prior to lineage commitment. Large-scale changes in chromatin accessibility occur without significant change in nucleosome density and represent key features of AgR loci not previously described. We further identify local dynamic repositioning of individual RSS-associated nucleosomes at IgH and Igκ loci while they become primed for recombination during B cell commitment. These changes in chromatin at AgR loci are regulated in a locus-, lineage-, and stage-specific manner during B lymphopoiesis, serving either to facilitate or to impose a barrier to V(D)J recombination. We suggest that local and global changes in chromatin openness in concert with nucleosome occupancy and placement of histone modifications facilitate the temporal order of AgR recombination. Our data have implications for the organizing principles that govern assembly of these large loci as well as for mechanisms that might contribute to aberrant V(D)J recombination and the development of lymphoid tumors.
Asunto(s)
Linfocitos B/fisiología , Cromatina/metabolismo , Reordenamiento Génico de Linfocito B , Linfopoyesis/genética , Receptores de Antígenos/genética , Recombinación V(D)J , Animales , Cromatina/química , Sitios Genéticos , Pruebas Genéticas , Cadenas Pesadas de Inmunoglobulina/genética , Cadenas kappa de Inmunoglobulina/genética , Linfoma/genética , Ratones , Ratones Endogámicos C57BL , Nucleasa Microcócica , Nucleosomas , Receptores de Antígenos de Linfocitos T alfa-beta/genéticaRESUMEN
PURPOSE: Several professional societies have published guidelines for the clinical interpretation of somatic variants, which specifically address diagnostic, prognostic, and therapeutic implications. Although these guidelines for the clinical interpretation of variants include data types that may be used to determine the oncogenicity of a variant (eg, population frequency, functional, and in silico data or somatic frequency), they do not provide a direct, systematic, and comprehensive set of standards and rules to classify the oncogenicity of a somatic variant. This insufficient guidance leads to inconsistent classification of rare somatic variants in cancer, generates variability in their clinical interpretation, and, importantly, affects patient care. Therefore, it is essential to address this unmet need. METHODS: Clinical Genome Resource (ClinGen) Somatic Cancer Clinical Domain Working Group and ClinGen Germline/Somatic Variant Subcommittee, the Cancer Genomics Consortium, and the Variant Interpretation for Cancer Consortium used a consensus approach to develop a standard operating procedure (SOP) for the classification of oncogenicity of somatic variants. RESULTS: This comprehensive SOP has been developed to improve consistency in somatic variant classification and has been validated on 94 somatic variants in 10 common cancer-related genes. CONCLUSION: The comprehensive SOP is now available for classification of oncogenicity of somatic variants.
Asunto(s)
Genoma Humano , Neoplasias , Pruebas Genéticas/métodos , Variación Genética/genética , Genoma Humano/genética , Genómica/métodos , Humanos , Neoplasias/genética , VirulenciaRESUMEN
Mechanistic roles for many lncRNAs are poorly understood, in part because their direct interactions with genomic loci and proteins are difficult to assess. Using a method to purify endogenous RNAs and their associated factors, we mapped the genomic binding sites for two highly expressed human lncRNAs, NEAT1 and MALAT1. We show that NEAT1 and MALAT1 localize to hundreds of genomic sites in human cells, primarily over active genes. NEAT1 and MALAT1 exhibit colocalization to many of these loci, but display distinct gene body binding patterns at these sites, suggesting independent but complementary functions for these RNAs. We also identified numerous proteins enriched by both lncRNAs, supporting complementary binding and function, in addition to unique associated proteins. Transcriptional inhibition or stimulation alters localization of NEAT1 on active chromatin sites, implying that underlying DNA sequence does not target NEAT1 to chromatin, and that localization responds to cues involved in the transcription process.
Asunto(s)
Cromatina/metabolismo , ARN Largo no Codificante/metabolismo , Sitios de Unión , Humanos , Modelos Genéticos , Hibridación de Ácido Nucleico , ARN Largo no Codificante/análisis , ARN Largo no Codificante/química , Transcripción GenéticaRESUMEN
The Drosophila male-specific lethal (MSL) dosage compensation complex increases transcript levels on the single male X chromosome to equal the transcript levels in XX females. However, it is not known how the MSL complex is linked to its DNA recognition elements, the critical first step in dosage compensation. Here, we demonstrate that a previously uncharacterized zinc finger protein, CLAMP (chromatin-linked adaptor for MSL proteins), functions as the first link between the MSL complex and the X chromosome. CLAMP directly binds to the MSL complex DNA recognition elements and is required for the recruitment of the MSL complex. The discovery of CLAMP identifies a key factor required for the chromosome-specific targeting of dosage compensation, providing new insights into how subnuclear domains of coordinate gene regulation are formed within metazoan genomes.
Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Compensación de Dosificación (Genética) , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Cromosoma X/genética , Cromosoma X/metabolismo , Animales , Línea Celular , Femenino , Masculino , Unión ProteicaRESUMEN
Genome function is dynamically regulated in part by chromatin, which consists of the histones, non-histone proteins and RNA molecules that package DNA. Studies in Caenorhabditis elegans and Drosophila melanogaster have contributed substantially to our understanding of molecular mechanisms of genome function in humans, and have revealed conservation of chromatin components and mechanisms. Nevertheless, the three organisms have markedly different genome sizes, chromosome architecture and gene organization. On human and fly chromosomes, for example, pericentric heterochromatin flanks single centromeres, whereas worm chromosomes have dispersed heterochromatin-like regions enriched in the distal chromosomal 'arms', and centromeres distributed along their lengths. To systematically investigate chromatin organization and associated gene regulation across species, we generated and analysed a large collection of genome-wide chromatin data sets from cell lines and developmental stages in worm, fly and human. Here we present over 800 new data sets from our ENCODE and modENCODE consortia, bringing the total to over 1,400. Comparison of combinatorial patterns of histone modifications, nuclear lamina-associated domains, organization of large-scale topological domains, chromatin environment at promoters and enhancers, nucleosome positioning, and DNA replication patterns reveals many conserved features of chromatin organization among the three organisms. We also find notable differences in the composition and locations of repressive chromatin. These data sets and analyses provide a rich resource for comparative and species-specific investigations of chromatin composition, organization and function.
Asunto(s)
Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , Cromatina/genética , Cromatina/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Animales , Línea Celular , Centrómero/genética , Centrómero/metabolismo , Cromatina/química , Ensamble y Desensamble de Cromatina/genética , Replicación del ADN/genética , Elementos de Facilitación Genéticos/genética , Epigénesis Genética , Heterocromatina/química , Heterocromatina/genética , Heterocromatina/metabolismo , Histonas/química , Histonas/metabolismo , Humanos , Anotación de Secuencia Molecular , Lámina Nuclear/metabolismo , Nucleosomas/química , Nucleosomas/genética , Nucleosomas/metabolismo , Regiones Promotoras Genéticas/genética , Especificidad de la EspecieRESUMEN
Variation in chromatin composition and organization often reflects differences in genome function. Histone variants, for example, replace canonical histones to contribute to regulation of numerous nuclear processes including transcription, DNA repair, and chromosome segregation. Here we focus on H2A.Bbd, a rapidly evolving variant found in mammals but not in invertebrates. We report that in human cells, nucleosomes bearing H2A.Bbd form unconventional chromatin structures enriched within actively transcribed genes and characterized by shorter DNA protection and nucleosome spacing. Analysis of transcriptional profiles from cells depleted for H2A.Bbd demonstrated widespread changes in gene expression with a net downregulation of transcription and disruption of normal mRNA splicing patterns. In particular, we observed changes in exon inclusion rates and increased presence of intronic sequences in mRNA products upon H2A.Bbd depletion. Taken together, our results indicate that H2A.Bbd is involved in formation of a specific chromatin structure that facilitates both transcription and initial mRNA processing.
Asunto(s)
Histonas/genética , Procesamiento Postranscripcional del ARN , ARN Mensajero/genética , Transcripción Genética , Línea Celular Tumoral , Cromatina/genética , Regulación hacia Abajo , Exones , Expresión Génica , Variación Genética , Células HeLa , Humanos , Intrones , Nucleosomas/genética , Proteómica/métodos , Empalme del ARNRESUMEN
We show that the physical distribution of nucleosomes at antigen receptor loci is subject to regulated cell type-specific and lineage-specific positioning and correlates with the accessibility of these gene segments to recombination. At the Ig heavy chain locus (IgH), a nucleosome in pro-B cells is generally positioned over each IgH variable (VH) coding segment, directly adjacent to the recombination signal sequence (RSS), placing the RSS in a position accessible to the recombination activating gene (RAG) recombinase. These changes result in establishment of a specific chromatin organization at the RSS that facilitates accessibility of the genomic DNA for the RAG recombinase. In contrast, in mouse embryonic fibroblasts the coding segment is depleted of nucleosomes, which instead cover the RSS, thereby rendering it inaccessible. Pro-T cells exhibit a pattern intermediate between pro-B cells and mouse embryonic fibroblasts. We also find large-scale variations of nucleosome density over hundreds of kilobases, delineating chromosomal domains within IgH, in a cell type-dependent manner. These findings suggest that developmentally regulated changes in nucleosome location and occupancy, in addition to the known chromatin modifications, play a fundamental role in regulating V(D)J recombination. Nucleosome positioning-which has previously been observed to vary locally at individual enhancers and promoters-may be a more general mechanism by which cells can regulate the accessibility of the genome during development, at scales ranging from several hundred base pairs to many kilobases.
Asunto(s)
Nucleosomas/metabolismo , Recombinación V(D)J , Animales , Línea Celular , Cromatina/genética , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , Inmunoprecipitación de Cromatina , Mapeo Cromosómico , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Epigenómica , Técnicas de Inactivación de Genes , Sitios Genéticos , Secuenciación de Nucleótidos de Alto Rendimiento , Cadenas Pesadas de Inmunoglobulina/genética , Región Variable de Inmunoglobulina/genética , Linfocitos/inmunología , Linfocitos/metabolismo , Ratones , Ratones Noqueados , Especificidad de Órganos , Células Precursoras de Linfocitos B/metabolismo , Unión Proteica , Receptores de Antígenos de Linfocitos T alfa-beta/genéticaRESUMEN
Dosage compensation is an essential process that equalizes transcript levels of X-linked genes between sexes by forming a domain of coordinated gene expression. Throughout the evolution of Diptera, many different X-chromosomes acquired the ability to be dosage compensated. Once each newly evolved X-chromosome is targeted for dosage compensation in XY males, its active genes are upregulated two-fold to equalize gene expression with XX females. In Drosophila melanogaster, the CLAMP zinc finger protein links the dosage compensation complex to the X-chromosome. However, the mechanism for X-chromosome identification has remained unknown. Here, we combine biochemical, genomic and evolutionary approaches to reveal that expansion of GA-dinucleotide repeats likely accumulated on the X-chromosome over evolutionary time to increase the density of CLAMP binding sites, thereby driving the evolution of dosage compensation. Overall, we present new insight into how subtle changes in genomic architecture, such as expansions of a simple sequence repeat, promote the evolution of coordinated gene expression.
Asunto(s)
Proteínas de Unión al ADN/genética , Repeticiones de Dinucleótido , Compensación de Dosificación (Genética) , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Cromosoma X/genética , Secuencias de Aminoácidos , Animales , Sitios de Unión , Evolución Biológica , ADN/química , Femenino , Dosificación de Gen , Genes Ligados a X , Ligamiento Genético , Genoma de los Insectos , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos , Análisis de Secuencia de ADNRESUMEN
In higher eukaryotes, up to 70% of genes have high levels of nonmethylated cytosine/guanine base pairs (CpGs) surrounding promoters and gene regulatory units. These features, called CpG islands, were identified over 20 years ago, but there remains little mechanistic evidence to suggest how these enigmatic elements contribute to promoter function, except that they are refractory to epigenetic silencing by DNA methylation. Here we show that CpG islands directly recruit the H3K36-specific lysine demethylase enzyme KDM2A. Nucleation of KDM2A at these elements results in removal of H3K36 methylation, creating CpG island chromatin that is uniquely depleted of this modification. KDM2A utilizes a zinc finger CxxC (ZF-CxxC) domain that preferentially recognizes nonmethylated CpG DNA, and binding is blocked when the CpG DNA is methylated, thus constraining KDM2A to nonmethylated CpG islands. These data expose a straightforward mechanism through which KDM2A delineates a unique architecture that differentiates CpG island chromatin from bulk chromatin.
Asunto(s)
Islas de CpG/genética , Histona Demetilasas/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Oxidorreductasas N-Desmetilantes/metabolismo , Secuencia de Aminoácidos , Sitios de Unión/genética , Metilación de ADN , Proteínas de Unión al ADN/metabolismo , Proteínas F-Box , Histonas/química , Humanos , Histona Demetilasas con Dominio de Jumonji , Lisina/química , Datos de Secuencia Molecular , Mutación , Oxidorreductasas N-Desmetilantes/química , Oxidorreductasas N-Desmetilantes/genética , Unión Proteica/genética , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Homología de Secuencia de AminoácidoRESUMEN
Chromatin is composed of DNA and a variety of modified histones and non-histone proteins, which have an impact on cell differentiation, gene regulation and other key cellular processes. Here we present a genome-wide chromatin landscape for Drosophila melanogaster based on eighteen histone modifications, summarized by nine prevalent combinatorial patterns. Integrative analysis with other data (non-histone chromatin proteins, DNase I hypersensitivity, GRO-Seq reads produced by engaged polymerase, short/long RNA products) reveals discrete characteristics of chromosomes, genes, regulatory elements and other functional domains. We find that active genes display distinct chromatin signatures that are correlated with disparate gene lengths, exon patterns, regulatory functions and genomic contexts. We also demonstrate a diversity of signatures among Polycomb targets that include a subset with paused polymerase. This systematic profiling and integrative analysis of chromatin signatures provides insights into how genomic elements are regulated, and will serve as a resource for future experimental investigations of genome structure and function.
Asunto(s)
Cromatina/genética , Cromatina/metabolismo , Drosophila melanogaster/genética , Animales , Línea Celular , Inmunoprecipitación de Cromatina , Proteínas Cromosómicas no Histona/análisis , Proteínas Cromosómicas no Histona/metabolismo , Desoxirribonucleasa I/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/crecimiento & desarrollo , Exones/genética , Regulación de la Expresión Génica/genética , Genes de Insecto/genética , Genoma de los Insectos/genética , Histonas/química , Histonas/metabolismo , Masculino , Anotación de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Complejo Represivo Polycomb 1 , ARN/análisis , ARN/genética , Análisis de Secuencia , Transcripción Genética/genéticaRESUMEN
BACKGROUND: It is unclear how DNA is packaged in a bacterial cell in the absence of nucleosomes. To investigate the initial level of DNA condensation in bacterial nucleoid we used in vivo DNA digestion coupled with high-throughput sequencing of the digestion-resistant fragments. To this end, we transformed E. coli cells with a plasmid expressing micrococcal nuclease. The nuclease expression was under the control of AraC repressor, which enabled us to perform an inducible digestion of bacterial nucleoid inside a living cell. RESULTS: Analysis of the genomic localization of the digestion-resistant fragments revealed their non-random distribution. The patterns observed in the distribution of the sequenced fragments indicate the presence of short DNA segments protected from the enzyme digestion, possibly because of interaction with DNA-binding proteins. The average length of such digestion-resistant segments is about 50 bp and the characteristic repeat in their distribution is about 90 bp. The gene starts are depleted of the digestion-resistant fragments, suggesting that these genomic regions are more exposed than genomic sequences on average. Sequence analysis of the digestion-resistant segments showed that while the GC-content of such sequences is close to the genome-wide value, they are depleted of A-tracts as compared to the bulk genomic DNA or to the randomized sequence of the same nucleotide composition. CONCLUSIONS: Our results suggest that DNA is packaged in the bacterial nucleoid in a non-random way that facilitates interaction of the DNA binding factors with regulatory regions of the genome.