Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Bioorg Med Chem Lett ; 42: 128050, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33887439

RESUMEN

ERAP1 is a zinc-dependent M1-aminopeptidase that trims lipophilic amino acids from the N-terminus of peptides. Owing to its importance in the processing of antigens and regulation of the adaptive immune response, dysregulation of the highly polymorphic ERAP1 has been implicated in autoimmune disease and cancer. To test this hypothesis and establish the role of ERAP1 in these disease areas, high affinity, cell permeable and selective chemical probes are essential. DG013A 1, is a phosphinic acid tripeptide mimetic inhibitor with reported low nanomolar affinity for ERAP1. However, this chemotype is a privileged structure for binding to various metal-dependent peptidases and contains a highly charged phosphinic acid moiety, so it was unclear whether it would display the high selectivity and passive permeability required for a chemical probe. Therefore, we designed a new stereoselective route to synthesize a library of DG013A 1 analogues to determine the suitability of this compound as a cellular chemical probe to validate ERAP1 as a drug discovery target.


Asunto(s)
Aminopeptidasas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Oligopéptidos/farmacología , Ácidos Fosfínicos/farmacología , Aminopeptidasas/metabolismo , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Antígenos de Histocompatibilidad Menor/metabolismo , Modelos Moleculares , Estructura Molecular , Oligopéptidos/síntesis química , Oligopéptidos/química , Ácidos Fosfínicos/síntesis química , Ácidos Fosfínicos/química , Relación Estructura-Actividad
2.
J Med Chem ; 66(4): 2622-2645, 2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36749938

RESUMEN

The existence of multiple centrosomes in some cancer cells can lead to cell death through the formation of multipolar mitotic spindles and consequent aberrant cell division. Many cancer cells rely on HSET (KIFC1) to cluster the extra centrosomes into two groups to mimic the bipolar spindle formation of non-centrosome-amplified cells and ensure their survival. Here, we report the discovery of a novel 2-(3-benzamidopropanamido)thiazole-5-carboxylate with micromolar in vitro inhibition of HSET (KIFC1) through high-throughput screening and its progression to ATP-competitive compounds with nanomolar biochemical potency and high selectivity against the opposing mitotic kinesin Eg5. Induction of the multipolar phenotype was shown in centrosome-amplified human cancer cells treated with these inhibitors. In addition, a suitable linker position was identified to allow the synthesis of both fluorescent- and trans-cyclooctene (TCO)-tagged probes, which demonstrated direct compound binding to the HSET protein and confirmed target engagement in cells, through a click-chemistry approach.


Asunto(s)
Cinesinas , Tiazoles , Humanos , Línea Celular Tumoral , Centrosoma/metabolismo , Cinesinas/antagonistas & inhibidores , Cinesinas/genética , Cinesinas/metabolismo , Mitosis , Huso Acromático/metabolismo , Tiazoles/química , Tiazoles/farmacología
3.
Oncogene ; 38(25): 5076-5090, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30905967

RESUMEN

Genomic alterations in cancer cells result in vulnerabilities that clinicians can exploit using molecularly targeted drugs, guided by knowledge of the tumour genotype. However, the selective activity of these drugs exerts an evolutionary pressure on cancers that can result in the outgrowth of resistant clones. Use of rational drug combinations can overcome resistance to targeted drugs, but resistance may eventually develop to combinatorial therapies. We selected MAPK- and PI3K-pathway inhibition in colorectal cancer as a model system to dissect out mechanisms of resistance. We focused on these signalling pathways because they are frequently activated in colorectal tumours, have well-characterised mutations and are clinically relevant. By treating a panel of 47 human colorectal cancer cell lines with a combination of MEK- and PI3K-inhibitors, we observe a synergistic inhibition of growth in almost all cell lines. Cells with KRAS mutations are less sensitive to PI3K inhibition, but are particularly sensitive to the combined treatment. Colorectal cancer cell lines with inherent or acquired resistance to monotherapy do not show a synergistic response to the combination treatment. Cells that acquire resistance to an MEK-PI3K inhibitor combination treatment still respond to an ERK-PI3K inhibitor regimen, but subsequently also acquire resistance to this combination treatment. Importantly, the mechanisms of resistance to MEK and PI3K inhibitors observed, MEK1/2 mutation or loss of PTEN, are similar to those detected in the clinic. ERK inhibitors may have clinical utility in overcoming resistance to MEK inhibitor regimes; however, we find a recurrent active site mutation of ERK2 that drives resistance to ERK inhibitors in mono- or combined regimens, suggesting that resistance will remain a hurdle. Importantly, we find that the addition of low concentrations of the BCL2-family inhibitor navitoclax to the MEK-PI3K inhibitor regimen improves the synergistic interaction and blocks the acquisition of resistance.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias Colorrectales/tratamiento farmacológico , Resistencia a Antineoplásicos/genética , Terapia Molecular Dirigida , Compuestos de Anilina/administración & dosificación , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Células HCT116 , Humanos , MAP Quinasa Quinasa 1/antagonistas & inhibidores , MAP Quinasa Quinasa 1/genética , MAP Quinasa Quinasa 1/metabolismo , MAP Quinasa Quinasa 2/antagonistas & inhibidores , MAP Quinasa Quinasa 2/genética , MAP Quinasa Quinasa 2/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Terapia Molecular Dirigida/métodos , Fosfohidrolasa PTEN/antagonistas & inhibidores , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Inhibidores de Proteínas Quinasas/administración & dosificación , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Transducción de Señal/genética , Sulfonamidas/administración & dosificación , Células Tumorales Cultivadas
4.
Eur J Med Chem ; 177: 316-337, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31158747

RESUMEN

Residues in the histone substrate binding sites that differ between the KDM4 and KDM5 subfamilies were identified. Subsequently, a C8-substituted pyrido[3,4-d]pyrimidin-4(3H)-one series was designed to rationally exploit these residue differences between the histone substrate binding sites in order to improve affinity for the KDM4-subfamily over KDM5-subfamily enzymes. In particular, residues E169 and V313 (KDM4A numbering) were targeted. Additionally, conformational restriction of the flexible pyridopyrimidinone C8-substituent was investigated. These approaches yielded potent and cell-penetrant dual KDM4/5-subfamily inhibitors including 19a (KDM4A and KDM5B Ki = 0.004 and 0.007 µM, respectively). Compound cellular profiling in two orthogonal target engagement assays revealed a significant reduction from biochemical to cell-based activity across multiple analogues; this decrease was shown to be consistent with 2OG competition, and suggests that sub-nanomolar biochemical potency will be required with C8-substituted pyrido[3,4-d]pyrimidin-4(3H)-one compounds to achieve sub-micromolar target inhibition in cells.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Histona Demetilasas con Dominio de Jumonji/antagonistas & inhibidores , Piridinas/farmacología , Pirimidinonas/farmacología , Línea Celular Tumoral , Cristalografía por Rayos X , Ensayos de Selección de Medicamentos Antitumorales/métodos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Histona Demetilasas con Dominio de Jumonji/química , Histona Demetilasas con Dominio de Jumonji/metabolismo , Estructura Molecular , Unión Proteica , Piridinas/síntesis química , Piridinas/química , Piridinas/metabolismo , Pirimidinonas/síntesis química , Pirimidinonas/química , Pirimidinonas/metabolismo , Relación Estructura-Actividad
5.
Artículo en Inglés | MEDLINE | ID: mdl-28265301

RESUMEN

BACKGROUND: Histone lysine demethylases (KDMs) are of interest as drug targets due to their regulatory roles in chromatin organization and their tight associations with diseases including cancer and mental disorders. The first KDM inhibitors for KDM1 have entered clinical trials, and efforts are ongoing to develop potent, selective and cell-active 'probe' molecules for this target class. Robust cellular assays to assess the specific engagement of KDM inhibitors in cells as well as their cellular selectivity are a prerequisite for the development of high-quality inhibitors. Here we describe the use of a high-content cellular immunofluorescence assay as a method for demonstrating target engagement in cells. RESULTS: A panel of assays for the Jumonji C subfamily of KDMs was developed to encompass all major branches of the JmjC phylogenetic tree. These assays compare compound activity against wild-type KDM proteins to a catalytically inactive version of the KDM, in which residues involved in the active-site iron coordination are mutated to inactivate the enzyme activity. These mutants are critical for assessing the specific effect of KDM inhibitors and for revealing indirect effects on histone methylation status. The reported assays make use of ectopically expressed demethylases, and we demonstrate their use to profile several recently identified classes of KDM inhibitors and their structurally matched inactive controls. The generated data correlate well with assay results assessing endogenous KDM inhibition and confirm the selectivity observed in biochemical assays with isolated enzymes. We find that both cellular permeability and competition with 2-oxoglutarate affect the translation of biochemical activity to cellular inhibition. CONCLUSIONS: High-content-based immunofluorescence assays have been established for eight KDM members of the 2-oxoglutarate-dependent oxygenases covering all major branches of the JmjC-KDM phylogenetic tree. The usage of both full-length, wild-type and catalytically inactive mutant ectopically expressed protein, as well as structure-matched inactive control compounds, allowed for detection of nonspecific effects causing changes in histone methylation as a result of compound toxicity. The developed assays offer a histone lysine demethylase family-wide tool for assessing KDM inhibitors for cell activity and on-target efficacy. In addition, the presented data may inform further studies to assess the cell-based activity of histone lysine methylation inhibitors.


Asunto(s)
Inhibidores Enzimáticos/metabolismo , Histona Demetilasas/antagonistas & inhibidores , Apoptosis/efectos de los fármacos , Biocatálisis , Dominio Catalítico , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Células HeLa , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Histonas/metabolismo , Humanos , Concentración 50 Inhibidora , Metilación/efectos de los fármacos , Microscopía Fluorescente , Mutagénesis , Paclitaxel/toxicidad , Filogenia , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estabilidad Proteica/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA