Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nature ; 619(7969): 300-304, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37316658

RESUMEN

Photosynthesis is generally assumed to be initiated by a single photon1-3 from the Sun, which, as a weak light source, delivers at most a few tens of photons per nanometre squared per second within a chlorophyll absorption band1. Yet much experimental and theoretical work over the past 40 years has explored the events during photosynthesis subsequent to absorption of light from intense, ultrashort laser pulses2-15. Here, we use single photons to excite under ambient conditions the light-harvesting 2 (LH2) complex of the purple bacterium Rhodobacter sphaeroides, comprising B800 and B850 rings that contain 9 and 18 bacteriochlorophyll molecules, respectively. Excitation of the B800 ring leads to electronic energy transfer to the B850 ring in approximately 0.7 ps, followed by rapid B850-to-B850 energy transfer on an approximately 100-fs timescale and light emission at 850-875 nm (refs. 16-19). Using a heralded single-photon source20,21 along with coincidence counting, we establish time correlation functions for B800 excitation and B850 fluorescence emission and demonstrate that both events involve single photons. We also find that the probability distribution of the number of heralds per detected fluorescence photon supports the view that a single photon can upon absorption drive the subsequent energy transfer and fluorescence emission and hence, by extension, the primary charge separation of photosynthesis. An analytical stochastic model and a Monte Carlo numerical model capture the data, further confirming that absorption of single photons is correlated with emission of single photons in a natural light-harvesting complex.


Asunto(s)
Complejos de Proteína Captadores de Luz , Fotones , Fotosíntesis , Rhodobacter sphaeroides , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Bacterioclorofilas/química , Bacterioclorofilas/metabolismo , Transferencia de Energía , Complejos de Proteína Captadores de Luz/química , Complejos de Proteína Captadores de Luz/metabolismo , Rhodobacter sphaeroides/química , Rhodobacter sphaeroides/metabolismo , Fluorescencia , Procesos Estocásticos , Método de Montecarlo
2.
Proc Natl Acad Sci U S A ; 120(28): e2220477120, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37399405

RESUMEN

In photosynthesis, absorbed light energy transfers through a network of antenna proteins with near-unity quantum efficiency to reach the reaction center, which initiates the downstream biochemical reactions. While the energy transfer dynamics within individual antenna proteins have been extensively studied over the past decades, the dynamics between the proteins are poorly understood due to the heterogeneous organization of the network. Previously reported timescales averaged over such heterogeneity, obscuring individual interprotein energy transfer steps. Here, we isolated and interrogated interprotein energy transfer by embedding two variants of the primary antenna protein from purple bacteria, light-harvesting complex 2 (LH2), together into a near-native membrane disc, known as a nanodisc. We integrated ultrafast transient absorption spectroscopy, quantum dynamics simulations, and cryogenic electron microscopy to determine interprotein energy transfer timescales. By varying the diameter of the nanodiscs, we replicated a range of distances between the proteins. The closest distance possible between neighboring LH2, which is the most common in native membranes, is 25 Šand resulted in a timescale of 5.7 ps. Larger distances of 28 to 31 Šresulted in timescales of 10 to 14 ps. Corresponding simulations showed that the fast energy transfer steps between closely spaced LH2 increase transport distances by ∼15%. Overall, our results introduce a framework for well-controlled studies of interprotein energy transfer dynamics and suggest that protein pairs serve as the primary pathway for the efficient transport of solar energy.


Asunto(s)
Complejos de Proteína Captadores de Luz , Proteobacteria , Proteobacteria/metabolismo , Complejos de Proteína Captadores de Luz/metabolismo , Fotosíntesis , Análisis Espectral , Transferencia de Energía
3.
J Phys Chem B ; 124(8): 1460-1469, 2020 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-31971387

RESUMEN

Photosynthetic light harvesting can occur with a remarkable near-unity quantum efficiency. The B800-850 complex, also known as light-harvesting complex 2 (LH2), is the primary light-harvesting complex in purple bacteria and has been extensively studied as a model system. The bacteriochlorophylls of the B800-850 complex are organized into two concentric rings, known as the B800 and B850 rings. However, depending on the species and growth conditions, the number of constituent subunits, the pigment geometry, and the absorption energies vary. While the dynamics of some B800-850 variants have been exhaustively characterized, others have not been measured. Furthermore, a direct and simultaneous comparison of how both structural and spectral differences between variants affect these dynamics has not been performed. In this work, we utilize ultrafast transient absorption measurements to compare the B800 to B850 energy-transfer rates in the B800-850 complex as a function of the number of subunits, geometry, and absorption energies. The nonameric B800-850 complex from Rhodobacter (Rb.) sphaeroides is 40% faster than the octameric B800-850 complex from Rhodospirillum (Rs.) molischianum, consistent with structure-based predictions. In contrast, the blue-shifted B800-820 complex from Rs. molischianum is only 20% faster than the B800-850 complex from Rs. molischianum despite an increase in the spectral overlap between the rings that would be expected to produce a larger increase in the energy-transfer rate. These measurements support current models that contain dark, higher-lying excitonic states to bridge the energy gap between rings, thereby maintaining similar energy-transfer dynamics. Overall, these results demonstrate that energy-transfer dynamics in the B800-850 complex are robust to the spectral and structural variations between species used to optimize energy capture and flow in purple bacteria.


Asunto(s)
Complejos de Proteína Captadores de Luz/metabolismo , Rhodobacter/metabolismo , Rhodospirillum/metabolismo , Cristalografía por Rayos X , Transferencia de Energía , Complejos de Proteína Captadores de Luz/química , Modelos Moleculares , Conformación Proteica
4.
Chem Sci ; 9(12): 3095-3104, 2018 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-29732092

RESUMEN

Photosynthetic purple bacteria convert solar energy to chemical energy with near unity quantum efficiency. The light-harvesting process begins with absorption of solar energy by an antenna protein called Light-Harvesting Complex 2 (LH2). Energy is subsequently transferred within LH2 and then through a network of additional light-harvesting proteins to a central location, termed the reaction center, where charge separation occurs. The energy transfer dynamics of LH2 are highly sensitive to intermolecular distances and relative organizations. As a result, minor structural perturbations can cause significant changes in these dynamics. Previous experiments have primarily been performed in two ways. One uses non-native samples where LH2 is solubilized in detergent, which can alter protein structure. The other uses complex membranes that contain multiple proteins within a large lipid area, which make it difficult to identify and distinguish perturbations caused by protein-protein interactions and lipid-protein interactions. Here, we introduce the use of the biochemical platform of model membrane discs to study the energy transfer dynamics of photosynthetic light-harvesting complexes in a near-native environment. We incorporate a single LH2 from Rhodobacter sphaeroides into membrane discs that provide a spectroscopically amenable sample in an environment more physiological than detergent but less complex than traditional membranes. This provides a simplified system to understand an individual protein and how the lipid-protein interaction affects energy transfer dynamics. We compare the energy transfer rates of detergent-solubilized LH2 with those of LH2 in membrane discs using transient absorption spectroscopy and transient absorption anisotropy. For one key energy transfer step in LH2, we observe a 30% enhancement of the rate for LH2 in membrane discs compared to that in detergent. Based on experimental results and theoretical modeling, we attribute this difference to tilting of the peripheral bacteriochlorophyll in the B800 band. These results highlight the importance of well-defined systems with near-native membrane conditions for physiologically-relevant measurements.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA