Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Chem ; 94(49): 17272-17278, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36453922

RESUMEN

We demonstrate the preparation of a dual-site carbon nanozyme, boron-doped and ketonic carbonyl (-C=O) group-enriched graphdiyne (B-GDY), with an enhanced peroxidase-like activity. Taking advantage of acidic oxidation treatment, GDY oxide (GDYO) with abundant surface oxygen-containing groups is obtained from pristine bulk GDY. Upon further thermal annealing of GDYO with H3BO3 under an inert atmosphere, B is introduced into GDY, while the loading of -C=O groups is increased onto B-GDY. We discover that boron-doped and ketonic carbonyl group-enriched graphdiyne as a dual-site carbon nanozyme endows it with an enhanced peroxidase-like activity, which is nearly 4.2-fold higher than that of GDY without B atoms and 6.6-fold higher than that of GDYO without B atoms and with low loading of -C=O groups. The high peroxidase-like activity of B-GDY is ascribed to the dual active sites (-C=O group and B atom) within it, which facilitates the adsorption and decomposition of H2O2 into hydroxyl radicals revealed by experimental and theoretical studies. Moreover, B-GDY is successfully employed to develop a colorimetric method for the detection of glucose with good sensitivity and selectivity. This work probes into the intrinsic peroxidase activity and structure-reactivity correlation, creating effective strategies for the preparation of GDY-based nanozymes.


Asunto(s)
Boro , Carbono , Cetonas , Peroxidasa , Peróxido de Hidrógeno , Óxidos
2.
Anal Chem ; 93(49): 16683-16689, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34860503

RESUMEN

We report a self-terminated electroless deposition method to prepare surfactant-free and monodispersed Pt nanoparticle (NP)-modified carbon fiber microelectrodes (Pt NP/CFEs) for electrochemical detection of hydrogen peroxide (H2O2) released from living cells. The surfactant-free and monodispersed Pt NPs with a uniform size of 65 nm are spontaneously deposited on a CFE surface by immersing an exposed carbon fiber (CF) of CFE in the PtCl42- solution, in which an exposed CF can be used as the reducing agent and stabilizer. A self-terminated electroless deposition method is demonstrated, in which the density and size of Pt NPs on a CFE surface do not increase when the reaction time increases from 20 to 60 min. The self-terminated electroless deposition process not only can effectively avoid any manual electrode modification and thus largely minimize person-to-person and electrode-to-electrode deviations but also can avoid the use of any extra reductant or surfactant in the fabrication process. Therefore, Pt NPs/CFEs, with good reproducibility and sensitivity, not only exhibit high electrocatalytic activity toward the oxidation of H2O2 but also maintain the spatial resolution of CFEs. Moreover, Pt NPs/CFEs can detect H2O2 with a wide linear range of 0.5-80 µM and a low detection limit of 0.17 µM and then can be successfully applied in the monitoring of H2O2 released from RAW 264.7 cells. The self-terminated electroless deposition method can also be extended to selectively prepare other metal NP-modified CFEs, such as Au NPs/CFEs or Ag NPs/CFEs, by choosing the metal ions with higher reduction potential as precursors. This work provides a simple, straightforward, and general method for the preparation of small, surfactant-free, and monodispersed metal NP-modified CFEs with high sensitivity, reproducibility, and spatial resolution.


Asunto(s)
Peróxido de Hidrógeno , Nanopartículas del Metal , Fibra de Carbono , Humanos , Microelectrodos , Reproducibilidad de los Resultados , Tensoactivos
3.
Biosci Biotechnol Biochem ; 83(5): 851-859, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30669954

RESUMEN

Lactoferrin (LF) is a naturally occurring iron-binding glycoprotein with a variety of biological functions. It has increasing demand every year and huge market potential. In this study, we explored the feasibility of expressing human LF (hLF) in edible algae C. reinhardtii. A codon-optimized hLF gene was synthesized, inserted into pCAMBIA-1301C and transformed into C. reinhardtii SP strain. In total, 7 hLF-expressing clones were selected with clone 121 exhibiting the highest expression level. The hLF-containing algal extract significantly inhibited the growth of bacteria such as Escherichia coli and Klebsiella variicola. During acute toxicity experiment no acute toxicity was detected, especially on changes of the body weight and histopathology of organs. The recombinant hLF possessed a similar or modestly reduced stability compared to commercial hLF standard. Our data indicated that expression of hLF in C. reinhardtii is feasible and paved a way to commercial production of lactoferrin using edible Chlamydomonas expression system. Abbreviations: atrazine chlorohydrolase gene (atzA); bovine serum albumin (BSA); human LF (hLF); lactoferrin (LF); Luria-Bertani (LB); quantitative reverse transcriptase PCR (qRT-PCR) ; SDS polyacrylamide gel electrophoresis (SDS-PAGE); Tris-acetate phosphate (TAP); western blotting (WB).


Asunto(s)
Chlamydomonas reinhardtii/metabolismo , Lactoferrina/metabolismo , Animales , Antibacterianos/farmacología , Western Blotting , Electroforesis en Gel de Poliacrilamida , Estudios de Factibilidad , Humanos , Lactoferrina/genética , Lactoferrina/farmacología , Ratones , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
4.
Chem Asian J ; 18(6): e202201284, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36719254

RESUMEN

We report the rational design of the matrix-free carbon dots (C-dots) with long wavelength and wavelength-tunable room-temperature phosphorescence (RTP). Taking advantage of microwave-assisted heating treatment, three RTP C-dots in boric acid (BA) composites are synthesized by using diethylenetriaminepentakis (methylphosphonic acid) as a multiple-sites crosslink agent, a moderately acid catalyst and P source; phenylenediamines (either o-PD, m-PD, or p-PD, respectively) as building block while BA as a carbonization-retardant matrix. After the water-soluble BA matrix is removed by dialysis, three matrix-free C-dots are obtained with RTP emission at 540, 550 and 570 nm under an excitation wavelength of 365 nm. Alterations of RTP emission of three matrix-free C-dots are ascribed to the difference in their particle size and band gap from n-π* transition. Furthermore, the application of three matrix-free C-dots are successfully performed in information encryption and decryption.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA