Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nanotechnology ; 33(18)2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013010

RESUMEN

In the treatment of neurodegenerative, sensory and cardiovascular diseases, electrical probes and arrays have shown quite a promising success rate. However, despite the outstanding clinical outcomes, their operation is significantly hindered by non-selective control of electric fields. A promising alternative is micromagnetic stimulation (µMS) due to the high permeability of magnetic field through biological tissues. The induced electric field from the time-varying magnetic field generated by magnetic neurostimulators is used to remotely stimulate neighboring neurons. Due to the spatial asymmetry of the induced electric field, high spatial selectivity of neurostimulation has been realized. Herein, some popular choices of magnetic neurostimulators such as microcoils (µcoils) and spintronic nanodevices are reviewed. The neurostimulator features such as power consumption and resolution (aiming at cellular level) are discussed. In addition, the chronic stability and biocompatibility of these implantable neurostimulator are commented in favor of further translation to clinical settings. Furthermore, magnetic nanoparticles (MNPs), as another invaluable neurostimulation material, has emerged in recent years. Thus, in this review we have also included MNPs as a remote neurostimulation solution that overcomes physical limitations of invasive implants. Overall, this review provides peers with the recent development of ultra-low power, cellular-level, spatially selective magnetic neurostimulators of dimensions within micro- to nano-range for treating chronic neurological disorders. At the end of this review, some potential applications of next generation neuro-devices have also been discussed.


Asunto(s)
Estimulación Eléctrica , Campos Magnéticos , Estimulación Eléctrica/instrumentación , Humanos , Neuroestimuladores Implantables , Nanopartículas de Magnetita/uso terapéutico , Enfermedades del Sistema Nervioso/terapia
2.
J Neural Eng ; 20(3)2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37187172

RESUMEN

Objective.The objective of this study was to investigate the effects of micromagnetic stimuli strength and frequency from theMagneticPen(MagPen) on the rat right sciatic nerve. The nerve's response was measured by recording muscle activity and movement of the right hind limb.Approach.The MagPen was custom-built to be stably held over the sciatic nerve. Rat leg muscle twitches were captured on video, and movements were extracted using image processing algorithms. EMG recordings were also used to measure muscle activity.Main results.The MagPen prototype, when driven by an alternating current, generates a time-varying magnetic field, which, according to Faraday's law of electromagnetic induction, induces an electric field for neuromodulation. The orientation-dependent spatial contour maps of the induced electric field from the MagPen prototype have been numerically simulated. Furthermore, in thisin vivowork onµMS, a dose-response relationship has been reported by experimentally studying how varying the amplitude (Range: 25 mVp-pthrough 6Vp-p) and frequency (range: 100 Hz through 5 kHz) of the MagPen stimuli alters hind limb movement. The primary highlight of this dose-response relationship (repeated overnrats, wheren= 7) is that for aµMS stimuli of higher frequency, significantly smaller amplitudes can trigger hind limb muscle twitch. This frequency-dependent activation can be justified by Faraday's Law, which states that the magnitude of the induced electric field is directly proportional to the frequency.Significance.This work reports thatµMS can successfully activate the sciatic nerve in a dose-dependent manner. The impact of this dose-response curve addresses the controversy in this research community about whether the stimulation from theseµcoils arise from a thermal effect or micromagnetic stimulation. MagPen probes do not have a direct electrochemical interface with tissue and therefore do not experience electrode degradation, biofouling, and irreversible redox reactions like traditional direct contact electrodes. Magnetic fields from theµcoils create more precise activation than electrodes because they apply more focused and localized stimulation. Finally, unique features ofµMS, such as the orientation dependence, directionality, and spatial specificity, have been discussed.


Asunto(s)
Músculo Esquelético , Nervio Ciático , Ratas , Animales , Nervio Ciático/fisiología , Músculo Esquelético/fisiología , Electrodos , Estimulación Eléctrica/métodos
3.
ACS Appl Mater Interfaces ; 14(8): 9945-9969, 2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35167743

RESUMEN

The giant magnetoresistance (GMR) effect has seen flourishing development from theory to application in the last three decades since its discovery in 1988. Nowadays, commercial devices based on the GMR effect, such as hard-disk drives, biosensors, magnetic field sensors, microelectromechanical systems (MEMS), etc., are available in the market, by virtue of the advances in state-of-the-art thin-film deposition and micro- and nanofabrication techniques. Different types of GMR biosensor arrays with superior sensitivity and robustness are available at a lower cost for a wide variety of biomedical applications. In this paper, we review the recent advances in GMR-based biomedical applications including disease diagnosis, genotyping, food and drug regulation, brain and cardiac mapping, etc. The GMR magnetic multilayer structure, spin valve, and magnetic granular structure, as well as fundamental theories of the GMR effect, are introduced at first. The emerging topic of flexible GMR for wearable biosensing is also included. Different GMR pattern designs, sensor surface functionalization, bioassay strategies, and on-chip accessories for improved GMR performances are reviewed. It is foreseen that combined with the state-of-the-art complementary metal-oxide-semiconductor (CMOS) electronics, GMR biosensors hold great promise in biomedicine, particularly for point-of-care (POC) disease diagnosis and wearable devices for real-time health monitoring.


Asunto(s)
Técnicas Biosensibles , Sistemas Microelectromecánicos , Dispositivos Electrónicos Vestibles , Electrónica , Magnetismo
4.
J Neural Eng ; 19(1)2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-35030549

RESUMEN

Objective.The objective of this study was to measure the effect of micromagnetic stimulation (µMS) on hippocampal neurons, by using single microcoil (µcoil) prototype, magnetic pen (MagPen). MagPen will be used to stimulate the CA3 region magnetically and excitatory post synaptic potential (EPSP) response measurements will be made from the CA1 region. The threshold for micromagnetic neurostimulation as a function of stimulation frequency of the current driving theµcoil will be demonstrated. Finally, the optimal stimulation frequency of the current driving theµcoil to minimize power will be estimated.Approach.A biocompatible, watertight, non-corrosive prototype, MagPen was built, and customized such that it is easy to adjust the orientation of theµcoil and its distance over the hippocampal tissue in anin vitrorecording setting. Finite element modeling of theµcoil design was performed to estimate the spatial profiles of the magnetic flux density (in T) and the induced electric fields (in V m-1). The induced electric field profiles generated at different values of current applied to theµcoil can elicit a neuronal response, which was validated by numerical modeling. The modeling settings for theµcoil were replicated in experiments on rat hippocampal neurons.Main results.The preferred orientation of MagPen over the Schaffer Collateral fibers was demonstrated such that they elicit a neuron response. The recorded EPSPs from CA1 region due toµMS at CA3 region were validated by applying tetrodotoxin (TTX). Application of TTX to the hippocampal slice blocked the EPSPs fromµMS while after prolonged TTX washout, a partial recovery of the EPSP fromµMS was observed. Finally, it was interpreted through numerical analysis that increasing frequency of the current driving theµcoil, led to a decrease in the current amplitude threshold for micromagnetic neurostimulation.Significance.This work reports that micromagnetic neurostimulation can be used to evoke population EPSP responses in the CA1 region of the hippocampus. It demonstrates the strength-frequency curve forµMS and its unique features related to orientation dependence of theµcoils, spatial selectivity and stimulation threshold related to distance dependence. Finally, the challenges related toµMS experiments were studied including ways to overcome them.


Asunto(s)
Hipocampo , Neuronas , Animales , Estimulación Eléctrica , Potenciales Postsinápticos Excitadores , Hipocampo/fisiología , Fenómenos Magnéticos , Ratas , Sinapsis/fisiología , Transmisión Sináptica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA