Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 221
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Pept Sci ; 29(8): e3476, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36603599

RESUMEN

The results of classifying into various types the 68 examples of isolated α-turns in the X-ray diffraction crystal structures of peptides documented in the literature are presented and discussed in this review article. α-Turns characterized by the trans disposition of all ω torsion angles are common for the backbone linear peptides investigated. In contrast, the cis arrangement of the N-terminal (ωi + 1 ) torsion angle, among those generated by the three residues internal to the α-turn, is a peculiar feature of 65% of the cyclic peptides. Among linear and cyclic peptides featuring the all-trans disposition of the ω torsion angles, only one third of the α-turns display φ,ψ values not too far from those characterizing regular α-helices. In general, our findings, taken together, suggest that a significant conformational diversity is compatible with the formation of an intramolecularly H-bonded C13 -member pseudocycle (α-turn) in linear and cyclic peptides.


Asunto(s)
Péptidos Cíclicos , Péptidos , Estructura Secundaria de Proteína , Péptidos/química , Difracción de Rayos X , Enlace de Hidrógeno , Conformación Proteica
2.
Biochemistry ; 60(36): 2704-2714, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34463474

RESUMEN

In synthetic peptides containing Gly and coded α-amino acids, one of the most common practices to enhance their helical extent is to incorporate a large number of l-Ala residues along with noncoded, strongly foldameric α-aminoisobutyric acid (Aib) units. Earlier studies have established that Aib-based peptides, with propensity for both the 310- and α-helices, have a tendency to form ordered three-dimensional structure that is much stronger than that exhibited by their l-Ala rich counterparts. However, the achiral nature of Aib induces an inherent, equal preference for the right- and left-handed helical conformations as found in Aib homopeptide stretches. This property poses challenges in the analysis of a model peptide helical conformation based on chirospectroscopic techniques like electronic circular dichroism (ECD), a very important tool for assigning secondary structures. To overcome such ambiguity, we have synthesized and investigated a thermally stable 14-mer peptide in which each of the Aib residues of our previously designed and reported analogue ABGY (where B stands for Aib) is replaced by Cα-methyl-l-valine (L-AMV). Analysis of the results described here from complementary ECD and 1H nuclear magnetic resonance spectroscopic techniques in a variety of environments firmly establishes that the L-AMV-containing peptide exhibits a significantly stronger preference compared to that of its Aib parent in terms of conferring α-helical character. Furthermore, being a chiral α-amino acid, L-AMV shows an intrinsic, extremely strong bias for a quite specific (right-handed) screw sense. These findings emphasize the relevance of L-AMV as a more appropriate unit for the design of right-handed α-helical peptide models that may be utilized as conformationally constrained scaffolds.


Asunto(s)
Aminoácidos/química , Ácidos Aminoisobutíricos/química , Péptidos/química , Valina/química , Dicroismo Circular/métodos , Modelos Moleculares , Conformación Proteica en Hélice alfa , Estructura Secundaria de Proteína
3.
Biochemistry ; 60(1): 19-30, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33320519

RESUMEN

Double electron-electron resonance (DEER, also known as PELDOR) and circular dichroism (CD) spectroscopies were explored for the purpose of studying the specificity of the conformation of peptides induced by their assembly into a self-recognizing system. The E and K peptides are known to form a coiled-coil heterodimer. Two paramagnetic TOAC α-amino acid residues were incorporated into each of the peptides (denoted as K** and E**), and a three-dimensional structural investigation in the presence or absence of their unlabeled counterparts E and K was performed. The TOAC spin-labels, replacing two Ala residues in each compound, are covalently and quasi-rigidly connected to the peptide backbone. They are known not to disturb the native structure, so that any conformational change can easily be monitored and assigned. DEER spectroscopy enables the measurement of the intramolecular electron spin-spin distance distribution between the two TOAC labels, within a length range of 1.5-8 nm. This method allows the individual conformational changes for the K**, K**/E, E**, and E**/K molecules to be investigated in glassy frozen solutions. Our data reveal that the conformations of the E** and K** peptides are strongly influenced by the presence of their counterparts. The results are discussed with those from CD spectroscopy and with reference to the already reported nuclear magnetic resonance data. We conclude that the combined DEER/TOAC approach allows us to obtain accurate and reliable information about the conformation of the peptides before and after their assembly into coiled-coil heterodimers. Applications of this induced fit method to other two-component, but more complex, systems, like a receptor and antagonists, a receptor and a hormone, and an enzyme and a ligand, are discussed.


Asunto(s)
Dicroismo Circular/métodos , Óxidos N-Cíclicos/química , Espectroscopía de Resonancia por Spin del Electrón/métodos , Fragmentos de Péptidos/química , Marcadores de Spin , Modelos Moleculares , Estructura Secundaria de Proteína
4.
J Org Chem ; 85(3): 1513-1524, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-31769989

RESUMEN

Peptides are well-known to play a fundamental therapeutic role and to represent building blocks for numerous useful biomaterials. Stabilizing their active 3D-structure by appropriate modifications remains, however, a challenge. In this study, we have expanded the available literature information on the conformational propensities of a promising backbone change of a terminally blocked δ-amino acid residue, a dipeptide mimic, by replacing its central amide moiety with an (E) Cß═Cγ alkene unit. Specifically, we have examined by DFT calculations, X-ray diffraction in the crystalline state, and FT-IR absorption/NMR spectroscopies in solution the extended vs folded preferences of analogues of this prototype system either unmodified or possessing single or multiple methyl group substituents on each of its four -CH2-CH═CH-CH2- main-chain carbon atoms. The theoretical and experimental results obtained clearly point to the conclusion that increasing the number of adequately positioned methylations will enhance the preference of the original sequence to fold, thus opening interesting perspectives in the design of conformationally constrained peptidomimetics.


Asunto(s)
Aminoácidos , Carbono , Metilación , Conformación Proteica , Espectroscopía Infrarroja por Transformada de Fourier
5.
Chembiochem ; 20(16): 2141-2150, 2019 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-31125169

RESUMEN

Trichogin GA IV is a short peptaibol with antimicrobial activity. This uncharged, but amphipathic, sequence is aligned at the membrane interface and undergoes a transition to an aggregated state that inserts more deeply into the membrane, an assembly that predominates at a peptide-to-lipid ratio (P/L) of 1:20. In this work, the natural trichogin sequence was prepared and reconstituted into oriented lipid bilayers. The 15 N NMR chemical shift is indicative of a well-defined alignment of the peptide parallel to the membrane surface at P/Ls of 1:120 and 1:20. When the P/L is increased to 1:8, an additional peptide topology is observed that is indicative of a heterogeneous orientation, with helix alignments ranging from around the magic angle to perfectly in-plane. The topological preference of the trichogin helix for an orientation parallel to the membrane surface was confirmed by attenuated total reflection FTIR spectroscopy. Furthermore, 19 F CODEX experiments were performed on a trichogin sequence with 19 F-Phe at position 10. The CODEX decay is in agreement with a tetrameric complex, in which the 19 F sites are about 9-9.5 Šapart. Thus, a model emerges in which the monomeric peptide aligns along the membrane surface. When the peptide concentration increases, first dimeric and then tetrameric assemblies form, made up from helices oriented predominantly parallel to the membrane surface. The formation of these aggregates correlates with the release of vesicle contents including relatively large molecules.


Asunto(s)
Membrana Dobles de Lípidos/química , Lipopéptidos/química , Fosfolípidos/química , Secuencia de Aminoácidos , Modelos Moleculares , Estructura Molecular , Propiedades de Superficie
6.
J Pept Sci ; 25(5): e3165, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30916858

RESUMEN

α-Amino acid residues with a ϕ,ψ constrained conformation are known to significantly bias the peptide backbone 3D structure. An intriguing member of this class of compounds is (αMe)Aze, characterized by an Nα -alkylated four-membered ring and Cα -methylation. We have already reported that (S)-(αMe)Aze, when followed by (S)-Ala in the homochiral dipeptide sequential motif -(S)-(αMe)Aze-(S)-Ala-, tends to generate the unprecedented γ-bend ribbon conformation, as formation of a regular, fully intramolecularly H-bonded γ-helix is precluded, due to the occurrence of a tertiary amide bond every two residues. In this work, we have expanded this study to the preparation and 3D structural analysis of the heterochiral (S)-Ala/(R)-(αMe)Aze sequential peptides from dimer to hexamer. Our conformational results show that members of this series may fold in type-II ß-turns or in γ-turns depending on the experimental conditions.


Asunto(s)
Alanina/química , Ácido Azetidinocarboxílico/química , Oligopéptidos/química , Oligopéptidos/síntesis química , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Difracción de Rayos X
7.
Phys Chem Chem Phys ; 21(41): 23217, 2019 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-31602454

RESUMEN

Correction for 'An EPR study of ampullosporin A, a medium-length peptaibiotic, in bicelles and vesicles' by Marco Bortolus et al., Phys. Chem. Chem. Phys., 2016, 18, 749-760.

8.
Org Biomol Chem ; 16(42): 7947-7958, 2018 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-30318540

RESUMEN

Unlike the extensively investigated relationship between the peptide ß-bend ribbon and its prototypical 310-helix conformation, the corresponding relationship between the narrower γ-bend ribbon and its regular γ-helix counterpart still remains to be studied, as the latter 3D-structures have not yet been experimentally authenticated. In this paper, we describe the results of the first characterization, both in the crystal state and in solution, of the γ-bend ribbon conformation using X-ray diffraction and FT-IR absorption, electronic CD and 2D-NMR spectroscopies applied to an appropriate set of synthetic, homo-chiral, sequential dipeptide oligomers based on (S)-Ala and the known γ-bend inducer, Cα-tetrasubstituted, N-alkylated α-amino acid residue (S)-Cα-methyl-azetidine-carboxylic acid.

9.
Phys Chem Chem Phys ; 20(5): 3592-3601, 2018 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-29340383

RESUMEN

The antimicrobial action of the peptide antibiotic alamethicin (Alm) is commonly related to peptide self-assembling resulting in the formation of voltage-dependent channels in bacterial membranes, which induces ion permeation. To obtain a deeper insight into the mechanism of channel formation, it is useful to know the dependence of self-assembling on peptide concentration. With this aim, we studied Alm F50/5 spin-labeled analogs in a model 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) membrane, for peptide-to-lipid (P/L) ratios varying between 1/1500 and 1/100. Pulsed electron-electron double resonance (PELDOR) spectroscopy reveals that even at the lowest concentration investigated, the Alm molecules assemble into dimers. Moreover, under these conditions, electron spin echo envelope modulation (ESEEM) spectroscopy of D2O-hydrated membranes shows an abrupt change from the in-plane to the trans-membrane orientation of the peptide. Therefore, we hypothesize that dimer formation and peptide reorientation are concurrent processes and represent the initial step of peptide self-assembling. By increasing peptide concentration, higher oligomers are formed. A simple kinetic model of equilibrium among monomers, dimers, and pentamers allows for satisfactorily describing the experimental PELDOR data. The inter-label distances in the oligomers obtained from PELDOR experiments become better resolved with increasing P/L ratio, thus suggesting that the supramolecular organization of the higher-order oligomers becomes more defined.


Asunto(s)
Alameticina/química , Membrana Dobles de Lípidos/química , Alameticina/metabolismo , Secuencia de Aminoácidos , Dimerización , Espectroscopía de Resonancia por Spin del Electrón , Cinética , Membrana Dobles de Lípidos/metabolismo , Fosfatidilcolinas/química , Marcadores de Spin , Agua/química
10.
Biopolymers ; 108(1)2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27404945

RESUMEN

In this study, we performed a detailed literature survey of the ɛ-turn in peptides and proteins. This three-dimensional structural feature is characterized by an eleven-membered pseudo-cycle closed by an intramolecular backbone…backbone H-bond. Interestingly, in this motif the direction of the N-H…O = C H-bond runs opposite to that of the much more popular and extensively investigated α-, ß-, and γ-turns. We did not authenticate unequivocally the ɛ-turn main-chain reversal topology in any linear short peptide. However, it is frequently observed in small cyclic peptides formed by four, five, and six amino acid residues with stringent geometric requirements. Rather surprisingly, ɛ-turns do occur in proteins, although to a relatively moderate extent, as an isolated feature or in the turn segment of hairpin motifs based on two antiparallel, pleated ß-strands. Moreover, the ɛ-turn may also host not only the seven-membered, intramolecularly H-bonded, pseudo-cycle termed γ-turn, either of the classic or inverse type, but also one (or even two) cis peptide bond(s) or a ß-bulge conformation. Based on their ϕ, ψ backbone torsion angles, we were able to classify the protein ɛ-turns in six different families. Conformational energy computations using the DFT methodology were also performed on the ɛ-turns adopted by the amino acid triplet -Gly-Gly-Gly- (Gly is the most commonly found residue at each of the three positions in our analysis of proteins). Again, in this computational study, six families of turns were identified, but only some of them resemble rather closely those extracted from our investigation on proteins.


Asunto(s)
Péptidos/química , Secuencia de Aminoácidos , Cristalografía por Rayos X , Enlace de Hidrógeno , Isomerismo , Espectroscopía de Resonancia Magnética , Oligopéptidos/química , Péptidos Cíclicos/química , Estructura Secundaria de Proteína , Proteínas/química
11.
Biopolymers ; 108(1)2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27623395

RESUMEN

Trichogin GA IV is a short-length (10-amino acid long), mostly hydrophobic, peptaibiotic with an N-terminal fatty acyl chain and a C-terminal 1,2-amino alcohol. A cardinal role of the terminal moieties in the cytotoxic activity of trichogin has been recently found. Previously, peptide orientation and dynamics of trichogin analogs in the membrane were studied using methyl ester derivatives. Therefore, in the present work we synthesized several trichogin analogs with naturally occurring terminal groups to verify whether these moieties have any effect on peptide-membrane interaction. These trichogin analogs, both neutral and carrying a positively charged Lys residue, bear the nitroxide-containing α-amino acid TOAC to study them using EPR spectroscopy. Vesicles were used to investigate orientation and penetration depth of the peptide at room temperature. Bicelles were employed to evaluate the order, dynamics, and orientation of the peptide at a near physiological temperature. In addition, the position of the N-terminal 1-octanoyl chain in the membrane was studied by labeling it with a nitroxide. The secondary structure of the peptides in vesicles was studied by CD spectroscopy showing that they adopt a mostly α-helical structure. In vesicles, the analogs insert below the lipid headgroups with the helix axis oriented parallel to the membrane surface at a peptide-to-lipid (P:L) ratio of 1:100. The presence of the single, positively charged Lys residue does not alter the orientation adopted by the peptides. In bicelles at P:L ratios 1:100 and 1:60, the peptide adopts a transmembrane orientation characterized by a very low orientational order, whereas at a 1:15 P:L ratio it severely disrupts the membrane. Our data shows that overall orientation and insertion in model membranes of the native trichogin GA IV are strictly comparable to those of its methyl ester analogs previously examined.


Asunto(s)
Membrana Dobles de Lípidos/química , Lipopéptidos/química , Secuencia de Aminoácidos , Dicroismo Circular , Espectroscopía de Resonancia por Spin del Electrón , Interacciones Hidrofóbicas e Hidrofílicas , Membrana Dobles de Lípidos/metabolismo , Lipopéptidos/síntesis química , Lipopéptidos/metabolismo , Liposomas/química , Liposomas/metabolismo , Estructura Secundaria de Proteína , Temperatura
12.
Biopolymers ; 2017 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-29127716

RESUMEN

In this work, an extensive set of spectroscopic and biophysical techniques (including FT-IR absorption, CD, 2D-NMR, fluorescence, and CW/PELDOR EPR) was used to study the conformational preferences, membrane interaction, and bioactivity properties of the naturally occurring synthetic 14-mer peptaibiotic chalciporin A, characterized by a relatively low (≈20%), uncommon proportion of the strongly helicogenic Aib residue. In addition to the unlabeled peptide, we gained in-depth information from the study of two labeled analogs, characterized by one or two residues of the helicogenic, nitroxyl radical-containing TOAC. All three compounds were prepared using the SPPS methodology, which was carefully modified in the course of the syntheses of TOAC-labeled analogs in view of the poorly reactive α-amino function of this very bulky residue and the specific requirements of its free-radical side chain. Despite its potentially high flexibility, our results point to a predominant, partly amphiphilic, α-helical conformation for this peptaibiotic. Therefore, not surprisingly, we found an effective membrane affinity and a remarkable penetration propensity. However, chalciporin A exhibits a selectivity in its antibacterial activity not in agreement with that typical of the other members of this peptide class.

13.
Soft Matter ; 13(23): 4231-4240, 2017 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-28509927

RESUMEN

Two appropriately functionalized nucleobases, thymine and adenine, have been covalently linked at the N- and C-termini, respectively, of two α-aminoisobutyric acid-rich helical peptide foldamers, aiming at driving self-assembly through complementary recognition. A crystal-state analysis (by X-ray diffraction) on the shorter, achiral foldamer 1 unambiguously shows that adeninethymine base pairing, through Watson-Crick intermolecular H-bonding, does take place between either end of each peptide molecule. In the crystals, π-stacking between base pairs is also observed. Evidence for time-dependent foldameroldamer associations for the longer, chiral foldamer 2 in solution is provided by circular dichroism measurements. The self-assembly of foldamer 2, through living supramolecular polymerization, eventually leads to the formation of twisted fibers. Such a supramolecular organization can be affected by addition of either pristine adenine or thymine, that acts as a "terminator" by selectively matching a pairing nucleobase at one end of the foldamer. The co-assembly of foldamer 2 with a porphyrin-derivatized thymine, under appropriate experimental conditions, leads to the formation of vesicles which, in turn, can be converted to the fiber morphology by changing the environmental polarity. Conversely, dendrimeric, star polymer-like microstructures are generated when the supramolecular assembly of foldamer 2 is seeded by adenine-capped gold nanoparticles.

14.
J Org Chem ; 82(19): 10033-10042, 2017 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-28858505

RESUMEN

The intrinsically blue-colored Ullman imidazolinyl nitronyl nitroxide (NN) mono-radicals have found various applications, in particular as spin probes and organic magnetic materials. Here, we present the solution-phase synthesis, extensive characterization, and conformational analysis of the first peptidomimetics with two pendant, chiral nitronyl nitroxide free radical units. Two (R)-Aic(NN) residues, where Aic(NN) is 2-amino-5-nitronylnitroxide-indan-2-carboxylic acid, have been inserted at positions i and i+3 of the pentapeptide Boc-(R)-Aic(NN)-(Ala)2-(R)-Aic(NN)-Ala-OMe and the hexapeptide Boc-[Ala-(R)-Aic(NN)-Ala]2-OMe as well. The two compounds were obtained in good yields and high purities. Thanks to a combination of several spectroscopic techniques (IR absorption, NMR, VCD, and EPR) we gained clear evidence that both compounds adopt a right-handed 310-helical conformation with both nitronyl nitroxide pendants positioned on the same side of the helix. This peptidomimetic/free radical system is a potentially excellent template for the preparation of a set of appropriate analogs with exciting applications in the area of host-guest organic chemistry, or to spectroscopically evaluate in-depth the intramolecular exchange interactions in this type of probe.

15.
J Pept Sci ; 23(2): 104-116, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28054413

RESUMEN

The role of the conformationally constrained α-aminoisobutyric acid (Aib) residue in the aggregation and self-assembly properties of oligopeptides is discussed, critically reviewing our recent work in the field. In this connection, three significant case studies are presented: (i) aggregation propensity of Aib homo-oligopeptides of different length; (ii) perturbation of the conformational and aggregation properties of Ala-based pentapeptides by a single Aib versus Ala substitution; and (iii) build up of self-assembled monolayers formed by Aib homo-hexapeptide building blocks. The peptides investigated were all functionalized by a fluorescent probe, that is, a naphthyl group in the first case-study and a pyrenyl group in the other two, with the aim at applying optical spectroscopy techniques and evaluating the relevance of aromatic interactions in the aggregation process. Microscopy techniques at nanometric resolution and results of molecular dynamics simulations are also presented to analyze how the conformational properties of the peptide building blocks would affect the morphology of the peptide aggregates from the nanoscale to the mesoscale. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.


Asunto(s)
Ácidos Aminoisobutíricos/química , Oligopéptidos/química , Agregado de Proteínas , Secuencia de Aminoácidos , Colorantes Fluorescentes/química , Enlace de Hidrógeno , Microscopía de Fuerza Atómica , Simulación de Dinámica Molecular , Sondas Moleculares/química , Estructura Secundaria de Proteína , Soluciones , Espectrometría de Fluorescencia
16.
J Pept Sci ; 23(4): 346-362, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28004461

RESUMEN

We performed the solution-phase synthesis of a set of model peptides, including homo-oligomers, based on the 2-aminoadamantane-2-carboxylic acid (Adm) residue, an extremely bulky, highly lipophilic, tricyclic, achiral, Cα -tetrasubstituted α-amino acid. In particular, for the difficult peptide coupling reaction between two Adm residues, we took advantage of the Meldal's α-azidoacyl chloride approach. Most of the synthesized Adm peptides were characterized by single-crystal X-ray diffraction analyses. The results indicate a significant propensity for the Adm residue to adopt γ-turn and γ-turn-like conformations. Interestingly, we found that a -CO-(Adm)2 -NH- sequence is folded in the crystal state into a regular, incipient γ-helix, at variance with the behavior of all of the homo-dipeptides from Cα -tetrasubstituted α-amino acids already investigated, which tend to adopt either the ß-turn or the fully extended conformation. Our density functional theory conformational energy calculations on the terminally blocked homo-peptides (n = 2-8) fully confirmed the crystal-state data, strongly supporting the view that this rigid Cα -tetrasubstituted α-amino acid residue is largely the most effective building block for γ-helix induction, although to a limited length (anti-cooperative effect). Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.


Asunto(s)
Péptidos/química , Cristalografía por Rayos X , Modelos Moleculares , Péptidos/síntesis química , Conformación Proteica , Teoría Cuántica , Soluciones
17.
J Pept Sci ; 23(2): 155-161, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27862690

RESUMEN

A symmetrical dipeptide-based diacetylene system (DAs) was found to be able to self-assemble in dichloromethane and to form a compact fiber network which resulted in a stable organogel. As a consequence of the organogel formation, we explored the possibility to run a light-induced topochemical polymerization. This is a typical reaction of ordered diacetylene moieties taking advantage from their organized packing mode resulting from fiber formation. Evidence for the generation of peptide-based polydiacetylenes is provided by Raman, UV-Vis, and CD spectroscopies and a set of microscopic techniques. Finally, we succeeded in processing a polymeric composite by use of the electrospinning technique, starting from a mixture of a dipeptide-based diacetylene and polymethyl methacrylate. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.


Asunto(s)
Dipéptidos/química , Polímeros/química , Polimetil Metacrilato/química , Poliinos/química , Técnicas Electroquímicas , Geles , Luz , Procesos Fotoquímicos , Polímero Poliacetilénico , Polimerizacion
18.
Biophys J ; 111(11): 2450-2459, 2016 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-27926846

RESUMEN

Alamethicins (ALMs) are antimicrobial peptides of fungal origin. Their sequences are rich in hydrophobic amino acids and strongly interact with lipid membranes, where they cause a well-defined increase in conductivity. Therefore, the peptides are thought to form transmembrane helical bundles in which the more hydrophilic residues line a water-filled pore. Whereas the peptide has been well characterized in terms of secondary structure, membrane topology, and interactions, much fewer data are available regarding the quaternary arrangement of the helices within lipid bilayers. A new, to our knowledge, fluorine-labeled ALM derivative was prepared and characterized when reconstituted into phospholipid bilayers. As a part of these studies, C19F3-labeled compounds were characterized and calibrated for the first time, to our knowledge, for 19F solid-state NMR distance and oligomerization measurements by centerband-only detection of exchange (CODEX) experiments, which opens up a large range of potential labeling schemes. The 19F-19F CODEX solid-state NMR experiments performed with ALM in POPC lipid bilayers and at peptide/lipid ratios of 1:13 are in excellent agreement with molecular-dynamics calculations of dynamic pentameric assemblies. When the peptide/lipid ratio was lowered to 1:30, ALM was found in the dimeric form, indicating that the supramolecular organization is tuned by equilibria that can be shifted by changes in environmental conditions.


Asunto(s)
Alameticina/química , Antibacterianos/química , Membrana Celular/química , Secuencia de Aminoácidos , Membrana Celular/metabolismo , Fenómenos Electrofisiológicos , Espectroscopía de Resonancia Magnética , Fosfatidilcolinas/metabolismo , Multimerización de Proteína
19.
Biopolymers ; 106(3): 376-84, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27038223

RESUMEN

L-Aspartyl-L-phenylalanine methyl ester, better known as aspartame, is not only one of the most used artificial sweeteners, but also a very interesting molecule with respect to the correlation between molecular structure and taste. The extreme conformational flexibility of this dipeptide posed a huge difficulty when researchers tried to use it as a lead compound to design new sweeteners. In particular, it was difficult to take advantage of its molecular model as a mold to infer the shape of the, then unknown, active site of the sweet taste receptor. Here, we follow the story of the 3D structural aspects of aspartame from early conformational studies to recent docking into homology models of the receptor. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 376-384, 2016.


Asunto(s)
Aspartame/química , Receptores Acoplados a Proteínas G/química , Edulcorantes/química , Gusto/fisiología , Aspartame/metabolismo , Sitios de Unión , Humanos , Conformación Molecular , Simulación del Acoplamiento Molecular , Unión Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Multimerización de Proteína , Receptores Acoplados a Proteínas G/metabolismo , Relación Estructura-Actividad , Edulcorantes/metabolismo
20.
Biopolymers ; 106(5): 697-713, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27353976

RESUMEN

Although thionamides would have been first prepared two centuries ago and their chemical and spectroscopic properties extensively investigated, only much more recently (since about 1985) a well deserved but still insufficient attention has been paid to their endothioxopeptide subfamily which nonetheless currently represents a rapidly emerging area of great scientific interest in the broader field of foldameric compounds based on biologically relevant building blocks. After two brief sections offering information on the unfortunately still limited number of endothioxopeptides discovered from natural sources but also on the impressive advancements registered in the last few years in their synthetic methods, this review article outlines the results of a detailed literature survey on the ongoing great, but not systematic, progress related to the conformational consequences generated by incorporating one (or more) thionamide group(s) into a polypeptide chain. Finally, a short discussion of the growing, but still in its infancy, class of the endoselenoxopeptide congeners is also presented.


Asunto(s)
Técnicas de Química Sintética/métodos , Péptidos/química , Péptidos/síntesis química , Compuestos de Sulfhidrilo/química , Estructura Secundaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA