Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Int J Biol Macromol ; 231: 123270, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36657542

RESUMEN

In the current work, we present a renewable alternative coating formulation made of durable titania nanoparticles and oxidized nanocellulose (TiO2NPs@OCNs) nanocomposites and sodium alginate (SA), to create an environmentally friendly and secure food packaging paper. OCNs sugarcane fibers are firstly hydrolyzed using ammonium persulphate (APS). Then, TiO2NPs@OCNs nanocomposites are made in situ with OCNs using a green water-based sol-gel synthesis. Gram (+) microorganisms as well as Gram (-) bacteria are used to test the antibacterial properties of the TiO2NPs@OCN dispersions. The results show that the TiO2NP@OCNs significantly decreases the growth for all bacterial species. The TiO2NP@OCNs nanocomposites are mixed with SA, and the resulting formulations are used to coat paper sheets. The corresponding physicochemical properties are evaluated using FTIR, TGA, AFM, SEM, and EDX. Furthermore, the mechanical strength, air permeability, and water vapor characteristics of the paper sheets treated with SA/TiO2NPs@OCN are carried out, resulting in a great improvement of these properties. Finally, the SA/TiO2NPs@OCNs coated papers have been used as packaging for strawberries. The findings demonstrate that coated papers could preserve strawberry quality better than unpacked fruit and extend strawberry shelf life from 6 to 18 days.


Asunto(s)
Celulosa Oxidada , Nanocompuestos , Nanopartículas , Antibacterianos/química , Nanopartículas/química , Nanocompuestos/química , Embalaje de Alimentos , Alginatos/química
2.
Langmuir ; 28(12): 5471-9, 2012 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-22385276

RESUMEN

In this work, colloidal gold nanoparticles (AuNPs) stabilized into a chitosan matrix were prepared using a green route. The synthesis was carried out by reducing Au(III) to Au(0) in an aqueous solution of chitosan and different organic acids (i.e., acetic, malonic, or oxalic acid). We have demonstrated that by varying the nature of the acid it is possible to tune the reduction rate of the gold precursor (HAuCl(4)) and to modify the morphology of the resulting metal nanoparticles. The use of chitosan, a biocompatible and biodegradable polymer with a large number of amino and hydroxyl functional groups, enables the simultaneous synthesis and surface modification of AuNPs in one pot. Because of the excellent film-forming capability of this polymer, AuNPs-chitosan solutions were used to obtain hybrid nanocomposite films that combine highly conductive AuNPs with a large number of organic functional groups. Herein, Au-chitosan nanocomposites are successfully proposed as sensitive and selective electrochemical sensors for the determination of caffeic acid, an antioxidant that has recently attracted much attention because of its benefits to human health. A linear response was obtained over a wide range of concentration from 5.00 × 10(-8) M to 2.00 × 10(-3) M, and the limit of detection (LOD) was estimated to be 2.50 × 10(-8) M. Moreover, further analyses have demonstrated that a high selectivity toward caffeic acid can be achieved without interference from catechin or ascorbic acid (flavonoid and nonphenolic antioxidants, respectively). This novel synthesis approach and the high performances of Au-chitosan hybrid materials in the determination of caffeic acid open up new routes in the design of highly efficient sensors, which are of great interest for the analysis of complex matrices such as wine, soft drinks, and fruit beverages.


Asunto(s)
Técnicas Biosensibles , Ácidos Cafeicos/análisis , Nanocompuestos/química , Quitosano , Oro Coloide , Tecnología Química Verde/métodos , Humanos , Nanopartículas del Metal/química , Microscopía Electrónica de Rastreo , Resonancia por Plasmón de Superficie
3.
Materials (Basel) ; 15(16)2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-36013927

RESUMEN

The combination of cellulosic materials and metal oxide semiconductors can provide composites with superior functional properties compared to cellulose. By using nanocellulose derived from agricultural waste, we propose a one-pot and environmentally friendly approach to the synthesis of nanocellulose-TiO2 (NC-TiO2) nanocomposites with peculiar photocatalytic activity and antibacterial effects. The as-prepared NC-TiO2 composites were fully characterized by different techniques, such as X-ray diffraction (XRD), µ-Raman, Fourier transform infrared spectroscopy (FTIR), thermogravimetry analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and diffuse reflectance spectroscopy (DRS). The results showed that well crystalline anatase TiO2 nanoparticles of about 5-6 nm were obtained. The photocatalytic activity in particular was evaluated by using methyl orange (MO) solution as a target pollutant at different pH values. It was found that all the tested NC-TiO2 nanocomposites showed stable photocatalytic activity, even after consecutive photocatalytic runs. In addition, NCT nanocomposites with higher TiO2 content showed degradation efficiency of almost 99% towards MO after 180 min of UV illumination. Finally, NC-TiO2 nanocomposites also showed intriguing antimicrobial properties, demonstrating to be effective against Gram-positive (Staphylococcus aureus, Bacillus subtilis) with 20-25 mm of inhibition zone and Gram-negative bacteria (Escherichia coli, Pseudomonas aeuroginosa) with 21-24 mm of inhibition zone, and fungi (Candida albicans) with 9-10 mm of inhibition zone.

4.
Int J Biol Macromol ; 181: 612-620, 2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-33798578

RESUMEN

Packaging is as important as the product itself because it is a crucial marketing and communication tool for business. Oxidized nanocellulose (ONC), extracted from agriculture residues of bagasse raw material using ecofriendly ammonium persulfate hydrolysis method, is used as support/reducing agent for the generation of silver nanoparticles (AgNPs) via photochemical procedure and reinforcing element in paper functionalization. The natural polymer, sodium alginate (SA) is exploited to enhance the binding of the ONC-AgNPs over cellulose fibers. The SA/ONC-AgNPs bio-nanocomposite is incorporated on paper matrix, which represents a more suitable choice respect to other substrates for its renewable, biocompatible, biodegradable, and cost-effective properties. Structural and antimicrobial evaluations show that the papers embedded with the SA/ONC-AgNPs possess good mechanical, thermal, barrier and antibacterial properties.


Asunto(s)
Alginatos/química , Celulosa/química , Embalaje de Alimentos , Nanopartículas del Metal/química , Nanocompuestos/química , Papel , Plata/química , Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Microscopía de Fuerza Atómica , Espectroscopía Infrarroja por Transformada de Fourier , Espectrometría Raman , Staphylococcus aureus/efectos de los fármacos , Temperatura , Termogravimetría , Difracción de Rayos X
5.
J Phys Chem B ; 110(47): 23977-81, 2006 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-17125366

RESUMEN

YAlO3 thin films doped with different amounts of Er3+ have been grown directly onto (110) SrTiO3 substrate using the metal-organic chemical vapor deposition method (MOCVD). X-ray diffraction patterns and the rocking curve of the (002) reflection point to the growth of <001>-oriented YAlO3 phase. Piezo-spectroscopic (PS) biaxial calibration was performed on two luminescence bands, related to transitions from the (4)S3/2 excited state, using a specially designed ball-on-ring loading jig. Such a PS calibration allowed us to retrieve the rate of wavelength shift with stress without separating the grown film from the substrate. The outcome of the PS calibration has been applied to build up in the field emission scanning electron microscope (FEG-SEM) high-resolution maps of the residual stress field developed in the film. Results indicate that the residual stress in Er3+:YAlO3 films were compressive in nature and increased with increasing Er3+ dopant concentration.

6.
J Phys Chem B ; 110(35): 17460-7, 2006 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-16942085

RESUMEN

A novel approach based on a molten multicomponent precursor source has been applied for the MOCVD fabrication of high-quality CaCu(3)Ti(4)O(12) (CCTO) thin films on various substrates. The adopted in situ strategy involves a molten mixture consisting of Ca(hfa)(2).tetraglyme, Ti(tmhd)(2)(O-iPr)(2), and Cu(tmhd)(2) [Hhfa = 1,1,1,5,5,5-hexafluoro-2,4-pentanedione; tetraglyme = 2,5,8,11,14-pentaoxapentadecane; Htmhd = 2,2,6,6-tetramethyl-3,5-heptandione; O-iPr = isopropoxide] precursors. Film structural and morphological characterizations have been carried out by several techniques [X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM)], and in particular the energy filtered TEM mapping and X-ray energy dispersive (EDX) analysis in TEM mode provided a suitable correlation between nanostructural properties of CCTO films and deposition conditions and/or the substrate nature. Correlation between the nanostructure and optical/dielectric properties has been investigated exploiting spectroscopic ellipsometry.

7.
J Am Chem Soc ; 127(40): 13772-3, 2005 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-16201781

RESUMEN

CaCu3Ti4O12 (CCTO) thin films were successfully grown on LaAlO3(100) and Pt/TiO2/SiO2/Si(100) substrates by a novel MOCVD approach. Epitaxial CCTO(001) thin films have been obtained on LaAlO3(100) substrates, while polycrystalline CCTO films have been grown on Pt/TiO2/SiO2/Si(100) substrates. Surface morphology and grain size of the different nanostructured deposited films were examined by AFM, and spectroscopic ellipsometry has been used to investigate the electronic part of the dielectric constant (epsilon2). Looking at the epsilon2 curves, it can be seen that by increasing the film structural order, a greater dielectric response has been obtained. The measured dielectric properties accounted for the ratio between grain volumes and grain boundary areas, which is very different in the different structured films.


Asunto(s)
Calcio/química , Cobre/química , Membranas Artificiales , Microscopía de Fuerza Atómica/métodos , Oxígeno/química , Titanio/química , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA