Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Cell Mol Life Sci ; 80(9): 248, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37578596

RESUMEN

Human erythroleukemic K562 cells represent the prototypical cell culture model of chronic myeloid leukemia (CML). The cells are pseudo-triploid and positive for the Philadelphia chromosome. Therefore, K562 cells have been widely used for investigating the BCR/ABL1 oncogene and the tyrosine kinase inhibitor, imatinib-mesylate. Further, K562 cells overexpress transferrin receptors (TfR) and have been used as a model for targeting cytotoxic therapies, via receptor-mediated endocytosis. Here, we have characterized K562 cells focusing on the karyotype of cells in prolonged culture, regulation of expression of TfR in wildtype (WT) and doxorubicin-resistant cells, and responses to histone deacetylase inhibition (HDACi). Karyotype analysis indicates novel chromosomes and gene expression analysis suggests a shift of cultured K562 cells away from patient-derived leukemic cells. We confirm the high expression of TfR on K562 cells using immunofluorescence and cell-surface receptor binding radioassays. Importantly, high TfR expression is observed in patient-derived cells, and we highlight the persistent expression of TfR following doxorubicin acquired resistance. Epigenetic analysis indicates that permissive histone acetylation and methylation at the promoter region regulates the transcription of TfR in K562 cells. Finally, we show relatively high expression of HDAC enzymes in K562 cells and demonstrate the chemotoxic effects of HDACi, using the FDA-approved hydroxamic acid, vorinostat. Together with a description of morphology, infrared spectral analysis, and examination of metabolic properties, we provide a comprehensive characterization of K562 cells. Overall, K562 cell culture systems remain widely used for the investigation of novel therapeutics for CML, which is particularly important in cases of imatinib-mesylate resistance.


Asunto(s)
Proteínas de Fusión bcr-abl , Leucemia Mielógena Crónica BCR-ABL Positiva , Humanos , Mesilato de Imatinib/farmacología , Mesilato de Imatinib/uso terapéutico , Células K562 , Proteínas de Fusión bcr-abl/genética , Transferrina , Pirimidinas/farmacología , Resistencia a Antineoplásicos/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Histona Desacetilasas/metabolismo , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Receptores de Transferrina/genética , Cromosomas/metabolismo , Mesilatos/farmacología , Apoptosis
2.
Mol Biol Rep ; 42(4): 791-7, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25270249

RESUMEN

Life expectancy has been examined from a variety of perspectives in recent history. Epidemiology is one perspective which examines causes of morbidity and mortality at the population level. Over the past few 100 years there have been dramatic shifts in the major causes of death and expected life length. This change has suffered from inconsistency across time and space with vast inequalities observed between population groups. In current focus is the challenge of rising non-communicable diseases (NCD), such as cardiovascular disease and type 2 diabetes mellitus. In the search to discover methods to combat the rising incidence of these diseases, a number of new theories on the development of morbidity have arisen. A pertinent example is the hypothesis published by David Barker in 1995 which postulates the prenatal and early developmental origin of adult onset disease, and highlights the importance of the maternal environment. This theory has been subject to criticism however it has gradually gained acceptance. In addition, the relatively new field of epigenetics is contributing evidence in support of the theory. This review aims to explore the implication and limitations of the developmental origin hypothesis, via an historical perspective, in order to enhance understanding of the increasing incidence of NCDs, and facilitate an improvement in planning public health policy.


Asunto(s)
Enfermedades Cardiovasculares/epidemiología , Diabetes Mellitus Tipo 2/epidemiología , Epigénesis Genética , Enfermedades Cardiovasculares/genética , Diabetes Mellitus Tipo 2/genética , Humanos , Incidencia , Morbilidad
3.
Mol Biol Rep ; 42(4): 825-34, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25253100

RESUMEN

It has been about nine decades since the proposal of Otto Warburg on the metabolism of cancer cells. Unlike normal cells which undergo glycolysis and oxidative phosphorylation in the presence of oxygen, proliferating and cancer cells exhibit an increased uptake of glucose and increased rate of glycolysis and predominantly undergo lactic acid fermentation. Whether this phenomenon is the consequence of genetic dysregulation in cancer or is the cause of cancer still remains unknown. However, there is certainly a strong link between the genetic factors, epigenetic modulation, cancer immunosurveillance and the Warburg effect, which will be discussed in this review. Dichloroacetate and 3-bromopyruvate are among the substances that have been studied as potential cancer therapies. With our expanding knowledge of cellular metabolism, therapies targeting the Warburg effect appear very promising. This review discusses different aspects of these emerging therapies.


Asunto(s)
Antineoplásicos/uso terapéutico , Glucólisis , Ácido Láctico/metabolismo , Neoplasias/metabolismo , Ácido Dicloroacético/uso terapéutico , Epigénesis Genética , Genes , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Piruvatos/uso terapéutico
4.
Mol Biol Rep ; 42(4): 835-40, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25670247

RESUMEN

Although oncogenetics remains a critical component of cancer biology and therapeutic research, recent interest has been taken towards the non-genetic features of tumour development and progression, such as cancer metabolism. Specifically, it has been observed that tumour cells are inclined to preferentially undergo glycolysis despite presence of adequate oxygen. First reported by Otto Warburg in the 1920s, and now termed the 'Warburg effect', this aberrant metabolism has become of particular interest due to the prevalence of the fermentation phenotype in a variety of cancers studied. Consequently, this phenotype has proven to play a pivotal role in cancer proliferation. As such Warburg's observations are now being integrated within the modern paradigms of cancer and in this review we explore the role of lactate as an insidious metabolite due to the Warburg effect.


Asunto(s)
Ácido Láctico/metabolismo , Neoplasias/metabolismo , Glucólisis , Humanos , Neoplasias/fisiopatología
5.
Mol Biol Rep ; 42(4): 819-23, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25672512

RESUMEN

In differentiated normal cells, the conventional route of glucose metabolism involves glycolysis, followed by the citric acid cycle and electron transport chain to generate usable energy in the form of adenosine triphosphate (ATP). This occurs in the presence of oxygen. In hypoxic conditions, normal cells undergo anaerobic glycolysis to yield significantly less energy producing lactate as a product. As first highlighted in the 1920s by Otto Warburg, the metabolism exhibited by tumor cells involves an increased rate of aerobic glycolysis, known as the Warburg effect. In aerobic glycolysis, pyruvate molecules yielded from glycolysis are converted into fewer molecules of ATP even in the presence of oxygen. Evidence indicates that the reasons as to why tumor cells undergo aerobic glycolysis include: (1) the shift in priority to accumulate biomass rather than energy production, (2) the evasion of apoptosis as fewer reactive oxygen species are released by the mitochondria and (3) the production of lactate to further fuel growth of tumors. In this mini-review we discuss emerging molecular aspects of cancer metabolism and the Warburg effect. Aspects of the Warburg effect are analyzed in the context of the established hallmarks of cancer including the role of oncogenes and tumor suppressor genes.


Asunto(s)
Glucólisis , Ácido Láctico/metabolismo , Neoplasias/metabolismo , Apoptosis , Genes Relacionados con las Neoplasias , Humanos , Mitocondrias/metabolismo , Neoplasias/genética , Ácido Pirúvico/metabolismo , Especies Reactivas de Oxígeno
6.
Mol Biol Rep ; 42(4): 841-51, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25689954

RESUMEN

Cancer cells have been shown to have altered metabolism when compared to normal non-malignant cells. The Warburg effect describes a phenomenon in which cancer cells preferentially metabolize glucose by glycolysis, producing lactate as an end product, despite being the presence of oxygen. The phenomenon was first described by Otto Warburg in the 1920s, and has resurfaced as a controversial theory, with both supportive and opposing arguments. The biochemical aspects of the Warburg effect outline a strong explanation for the cause of cancer cell proliferation, by providing the biological requirements for a cell to grow. Studies have shown that pathways such as phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) as well as hypoxia inducible factor-1 (HIF-1) are central regulators of glycolysis, cancer metabolism and cancer cell proliferation. Studies have shown that PI3K signaling pathways have a role in many cellular processes such as metabolism, inflammation, cell survival, motility and cancer progression. Herein, the cellular aspects of the PI3K pathway are described, as well as the influence HIF has on cancer cell metabolism. HIF-1 activation has been related to angiogenesis, erythropoiesis and modulation of key enzymes involved in aerobic glycolysis, thereby modulating key processes required for the Warburg effect. In this review we discuss the molecular aspects of the Warburg effect with a particular emphasis on the role of the HIF-1 and the PI3K pathway.


Asunto(s)
Glucólisis , Factor 1 Inducible por Hipoxia/metabolismo , Ácido Láctico/metabolismo , Neoplasias/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Animales , Proliferación Celular , Humanos , Mamíferos , Neoplasias/fisiopatología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
7.
J Mol Graph Model ; 97: 107568, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32097886

RESUMEN

Streptococcus pneumoniae infection can lead to pneumococcal disease, a major cause of mortality in children under the age of five years. In low- and middle-income country settings where pneumococcal disease burden is high, vaccine use is low and widespread antibiotic use has led to increased rates of multi-drug resistant pneumococci. l-sulforaphane (LSF), derived from broccoli and other cruciferous vegetables, has established anti-inflammatory, antioxidant, and anti-microbial properties. Hence, we sought to investigate the potential role of LSF against pneumococcal infection. Using a combination of in vitro and computational methods, the results showed that LSF and relevant metabolites had a potential to reduce pneumococcal adherence through modulation of host receptors, regulation of inflammation, or through direct modification of bacterial factors. Treatment with LSF and metabolites reduced pneumococcal adherence to respiratory epithelial cells. Synchrotron-Fourier transform infrared microspectroscopy (S-FTIR) revealed biochemical changes in protein and lipid profiles of lung epithelial cells following treatment with LSF or metabolites. Molecular docking studies of 116 pneumococcal and 89 host factors revealed a potent effect for the metabolite LSF-glutathione (GSH). A comprehensive list of factors involved in interactions between S. pneumoniae and host cells was compiled to construct a bacterium and host interaction network. Network analysis revealed plasminogen, fibronectin, and RrgA as key factors involved in pneumococcal-host interactions. Therefore, we propose that these constitute critical targets for direct inhibition by LSF and/or metabolites, which may disrupt pneumococcal-host adherence. Overall, our findings further enhance understanding of the potential role of LSF to modulate pneumococcal-host dynamics.


Asunto(s)
Streptococcus pneumoniae , Sincrotrones , Niño , Preescolar , Humanos , Isotiocianatos , Simulación del Acoplamiento Molecular , Espectroscopía Infrarroja por Transformada de Fourier , Sulfóxidos
8.
Antioxid Redox Signal ; 22(16): 1425-62, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25366930

RESUMEN

SIGNIFICANCE: Chronic myeloid leukemia (CML) involves the malignant transformation of hematopoietic stem cells, defined largely by the Philadelphia chromosome and expression of the breakpoint cluster region-Abelson (BCR-ABL) oncoprotein. Pharmacological tyrosine kinase inhibitors (TKIs), including imatinib mesylate, have overcome limitations in conventional treatment for the improved clinical management of CML. RECENT ADVANCES: Accumulated evidence has led to the identification of a subpopulation of quiescent leukemia progenitor cells with stem-like self renewal properties that may initiate leukemogenesis, which are also shown to be present in residual disease due to their insensitivity to tyrosine kinase inhibition. CRITICAL ISSUES: The characterization of quiescent leukemia progenitor cells as a unique cell population in CML pathogenesis has become critical with the complete elucidation of mechanisms involved in their survival independent of BCR-ABL that is important in the development of novel anticancer strategies. Understanding of these functional pathways in CML progenitor cells will allow for their selective therapeutic targeting. In addition, disease pathogenesis and drug responsiveness is also thought to be modulated by epigenetic regulatory mechanisms such as DNA methylation, histone acetylation, and microRNA expression, with a capacity to control CML-associated gene transcription. FUTURE DIRECTIONS: A number of compounds in combination with TKIs are under preclinical and clinical investigation to assess their synergistic potential in targeting leukemic progenitor cells and/or the epigenome in CML. Despite the collective promise, further research is required in order to refine understanding, and, ultimately, advance antileukemic therapeutic strategies.


Asunto(s)
Benzamidas/uso terapéutico , Epigénesis Genética/efectos de los fármacos , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Piperazinas/uso terapéutico , Inhibidores de Proteínas Quinasas/uso terapéutico , Pirimidinas/uso terapéutico , Animales , Benzamidas/farmacología , Humanos , Mesilato de Imatinib , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Células Madre Neoplásicas/patología , Piperazinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/farmacología
9.
Antioxid Redox Signal ; 22(16): 1382-424, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25364882

RESUMEN

SIGNIFICANCE: Sulforaphane, produced by the hydrolytic conversion of glucoraphanin after ingestion of cruciferous vegetables, particularly broccoli and broccoli sprouts, has been extensively studied due to its apparent health-promoting properties in disease and limited toxicity in normal tissue. Recent Studies: Recent identification of a sub-population of tumor cells with stem cell-like self-renewal capacity that may be responsible for relapse, metastasis, and resistance, as a potential target of the dietary compound, may be an important aspect of sulforaphane chemoprevention. Evidence also suggests that sulforaphane may target the epigenetic alterations observed in specific cancers, reversing aberrant changes in gene transcription through mechanisms of histone deacetylase inhibition, global demethylation, and microRNA modulation. CRITICAL ISSUES: In this review, we discuss the biochemical and biological properties of sulforaphane with a particular emphasis on the anticancer properties of the dietary compound. Sulforaphane possesses the capacity to intervene in multistage carcinogenesis through the modulation and/or regulation of important cellular mechanisms. The inhibition of phase I enzymes that are responsible for the activation of pro-carcinogens, and the induction of phase II enzymes that are critical in mutagen elimination are well-characterized chemopreventive properties. Furthermore, sulforaphane mediates a number of anticancer pathways, including the activation of apoptosis, induction of cell cycle arrest, and inhibition of NFκB. FUTURE DIRECTIONS: Further characterization of the chemopreventive properties of sulforaphane and its capacity to be selectively toxic to malignant cells are warranted to potentially establish the clinical utility of the dietary compound as an anti-cancer compound alone, and in combination with clinically relevant therapeutic and management strategies.


Asunto(s)
Anticarcinógenos/farmacología , Represión Epigenética/genética , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Isotiocianatos/farmacología , Neoplasias/dietoterapia , Neoplasias/prevención & control , Animales , Anticarcinógenos/administración & dosificación , Anticarcinógenos/uso terapéutico , Quimioprevención , Suplementos Dietéticos , Inhibidores de Histona Desacetilasas/administración & dosificación , Inhibidores de Histona Desacetilasas/uso terapéutico , Humanos , Isotiocianatos/administración & dosificación , Isotiocianatos/uso terapéutico , Neoplasias/genética , Neoplasias/metabolismo , Sulfóxidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA