Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Proc Natl Acad Sci U S A ; 112(3): 696-701, 2015 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-25552555

RESUMEN

Electron-hole separation following hard X-ray absorption during diffraction analysis of soft materials under cryogenic conditions produces substantial local electric fields visualizable by second harmonic generation (SHG) microscopy. Monte Carlo simulations of X-ray photoelectron trajectories suggest the formation of substantial local electric fields in the regions adjacent to those exposed to X-rays, indicating a possible electric-field-induced SHG (EFISH) mechanism for generating the observed signal. In studies of amorphous vitreous solvents, analysis of the SHG spatial profiles following X-ray microbeam exposure was consistent with an EFISH mechanism. Within protein crystals, exposure to 12-keV (1.033-Å) X-rays resulted in increased SHG in the region extending ∼ 3 µm beyond the borders of the X-ray beam. Moderate X-ray exposures typical of those used for crystal centering by raster scanning through an X-ray beam were sufficient to produce static electric fields easily detectable by SHG. The X-ray-induced SHG activity was observed with no measurable loss for longer than 2 wk while maintained under cryogenic conditions, but disappeared if annealed to room temperature for a few seconds. These results provide direct experimental observables capable of validating simulations of X-ray-induced damage within soft materials. In addition, X-ray-induced local fields may potentially impact diffraction resolution through localized piezoelectric distortions of the lattice.


Asunto(s)
Electricidad , Sincrotrones , Cinética , Modelos Teóricos , Método de Montecarlo
2.
Anal Chem ; 87(21): 10950-5, 2015 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-26465382

RESUMEN

Here we demonstrate the use of second harmonic generation (SHG) microscopy-guided synchrotron powder X-ray diffraction (PXRD) for the detection of trace crystalline active pharmaceutical ingredients in a common polymer blend. The combined instrument is capable of detecting 100 ppm crystalline ritonavir in an amorphous hydroxypropyl methylcellulose matrix with a high signal-to-noise ratio (>5000). The high spatial resolution afforded by SHG microscopy allows for the use of a minibeam collimator to reduce the total volume of material probed by synchrotron PXRD. The reduction in probed volume results in reduced background from amorphous material. The ability to detect low crystalline loading has the potential to improve measurements in the formulation pipeline for pharmaceutical solid dispersions, for which even trace quantities of crystalline active ingredients can negatively impact the stability and bioavailability of the final drug product.


Asunto(s)
Difracción de Polvo/métodos , Límite de Detección
3.
J Synchrotron Radiat ; 21(Pt 5): 1180-7, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25178010

RESUMEN

Experiments and modeling are described to perform spectral fitting of multi-threshold counting measurements on a pixel-array detector. An analytical model was developed for describing the probability density function of detected voltage in X-ray photon-counting arrays, utilizing fractional photon counting to account for edge/corner effects from voltage plumes that spread across multiple pixels. Each pixel was mathematically calibrated by fitting the detected voltage distributions to the model at both 13.5 keV and 15.0 keV X-ray energies. The model and established pixel responses were then exploited to statistically recover images of X-ray intensity as a function of X-ray energy in a simulated multi-wavelength and multi-counting threshold experiment.


Asunto(s)
Fotones , Radiometría/instrumentación , Tomografía por Rayos X/métodos , Calibración , Aumento de la Imagen/instrumentación , Aumento de la Imagen/métodos , Matemática , Dispersión de Radiación
4.
Mol Pharm ; 11(9): 3027-38, 2014 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-25105204

RESUMEN

The phase behavior of supersaturated solutions of a relatively hydrophobic drug, danazol, was studied in the absence and presence of polymeric additives. To differentiate between phase separation to a noncrystalline phase and phase separation to a crystalline phase, an environmentally sensitive fluorescent probe was employed. Induction times for crystallization in the presence and absence of polymeric additives were studied using a combination of ultraviolet and fluorescence spectroscopy. It was found that, when danazol was added to aqueous media at concentrations above the amorphous solubility, liquid-liquid phase separation was briefly observed prior to crystallization, resulting in a short-lived, drug-rich noncrystalline danazol phase with an initial size of around 500 nm. The addition of polymers was found to greatly extend the lifetime of the supersaturated two phase system, delaying the onset of crystallization from a few minutes to a few hours. Below a certain threshold danazol concentration, found to represent the amorphous solubility, only crystallization was observed. Thus, although the addition of polymers was unable to prevent danazol from precipitating once a threshold concentration was exceeded, they did inhibit crystallization, leading to a solution with prolonged supersaturation. This observation highlights the need to determine the structure of the precipitating phase, since it is linked to the resultant solution concentration time profile.


Asunto(s)
Danazol/química , Polímeros/química , Soluciones/química , Agua/química , Precipitación Química , Cristalización/métodos , Interacciones Hidrofóbicas e Hidrofílicas , Tamaño de la Partícula , Solubilidad
5.
Pharm Dev Technol ; 19(2): 247-56, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23477494

RESUMEN

Amorphous and crystalline solids are commonly found together in a variety of pharmaceutical and food products. In this study, the influence of co-formulation of amorphous maltodextrins (MDs) and crystalline sucrose (S) on moisture sorption, deliquescence, and glass transition (Tg) properties of powder blends was investigated. Individual components and binary mixtures of four different molecular weight MDs with sucrose in 1:1 w/w ratios were exposed to various relative humidity (RH) environments and their equilibrium and dynamic moisture contents were monitored. The deliquescence point (RH0) and dissolution behavior of sucrose alone and in blends was also monitored by polarized light microscopy and second harmonic generation imaging. In S:MD blends, the deliquescence RH of sucrose was lower than the RH0 of sucrose alone, and synergistic moisture sorption also occurred at RHs lower than the RH0. Intimate contact of sucrose crystals with the amorphous MDs resulted in complete dissolution of sucrose at RH < RH0. When blends were stored at conditions exceeding the Tg of the individual MDs (25 °C and 60%, 49% and 34%RH for MD21, MD29 and MD40, respectively), the Tg of the blends was lower than that of individual MDs. Thus, co-formulation of amorphous MDs with crystalline sucrose sensitizes the blend to moisture, potentially leading to deleterious changes in the formulation if storage conditions are not adequately controlled.


Asunto(s)
Polisacáridos/química , Sacarosa/química , Agua/química , Cristalización , Humedad , Temperatura de Transición
6.
J Synchrotron Radiat ; 20(Pt 4): 531-40, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23765294

RESUMEN

Nonlinear optical (NLO) instrumentation has been integrated with synchrotron X-ray diffraction (XRD) for combined single-platform analysis, initially targeting applications for automated crystal centering. Second-harmonic-generation microscopy and two-photon-excited ultraviolet fluorescence microscopy were evaluated for crystal detection and assessed by X-ray raster scanning. Two optical designs were constructed and characterized; one positioned downstream of the sample and one integrated into the upstream optical path of the diffractometer. Both instruments enabled protein crystal identification with integration times between 80 and 150 µs per pixel, representing a ∼10(3)-10(4)-fold reduction in the per-pixel exposure time relative to X-ray raster scanning. Quantitative centering and analysis of phenylalanine hydroxylase from Chromobacterium violaceum cPAH, Trichinella spiralis deubiquitinating enzyme TsUCH37, human κ-opioid receptor complex kOR-T4L produced in lipidic cubic phase (LCP), intimin prepared in LCP, and α-cellulose samples were performed by collecting multiple NLO images. The crystalline samples were characterized by single-crystal diffraction patterns, while α-cellulose was characterized by fiber diffraction. Good agreement was observed between the sample positions identified by NLO and XRD raster measurements for all samples studied.


Asunto(s)
Microscopía Fluorescente/métodos , Sincrotrones , Cristalización , Humanos , Proteínas/química , Difracción de Rayos X
7.
Proc SPIE Int Soc Opt Eng ; 9401: 940109, 2015 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-27041789

RESUMEN

Pixel-array array detectors allow single-photon counting to be performed on a massively parallel scale, with several million counting circuits and detectors in the array. Because the number of photoelectrons produced at the detector surface depends on the photon energy, these detectors offer the possibility of spectral imaging. In this work, a statistical model of the instrument response is used to calibrate the detector on a per-pixel basis. In turn, the calibrated sensor was used to perform separation of dual-energy diffraction measurements into two monochromatic images. Targeting applications include multi-wavelength diffraction to aid in protein structure determination and X-ray diffraction imaging.

8.
J Pharm Sci ; 102(2): 638-48, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23225152

RESUMEN

Solid dispersions have been used to improve the bioavailability of poorly water-soluble drugs. However, drug solid-state phase, compositional uniformity, and scale-up problems are issues that need to be addressed. To allow for highly controllable products, the drop printing (DP) technique can provide precise dosages and predictable compositional uniformity of active pharmaceutical ingredients in two-/three-dimensional structures when integrated with edible substrates. With different preparation conditions, DP was conducted to fabricate naproxen (NAP)-polyvinylpyrrolidone solid dispersions with chitosan and hydroxypropyl methylcellulose films as the substrate. Scanning electron microscopy, X-ray diffraction, second harmonic generation microscopy, and atomic force microscopy analyses were performed to characterize the microstructure and spatial distribution of NAP in the solid dispersions. The results identified that composition, temperature, and substrate type all had an impact on morphology and crystallization of samples. The surface energy approach was combined with classical nucleation theory to evaluate the affinity between the nucleus of NAP and substrates. Finally, the collective results of the drug were correlated to the release profile of NAP within each sample.


Asunto(s)
Química Farmacéutica/métodos , Naproxeno/síntesis química , Povidona/síntesis química , Naproxeno/metabolismo , Povidona/metabolismo , Especificidad por Sustrato , Difracción de Rayos X
9.
J Phys Chem B ; 117(5): 1494-500, 2013 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-23320811

RESUMEN

The crystallization kinetics of naproxen (NAP) in NAP/polyethylene glycol (NAP/PEG) solid dispersions prepared at different crystallization temperatures was studied by in situ small-angle X-ray scattering/wide-angle X-ray scattering (SAXS/WAXS). It was found that the crystallization rate of NAP was faster at 25 °C in comparison to 40 °C. This resulted in different sizes of NAP domains, and consequently impacted the dissolution behavior. The sizes of NAP domains prepared at 40 °C were larger than those at 25 °C, as determined with surface area analysis, utilizing second-order nonlinear optical imaging of chiral crystals (SONICC). Consistent with this observation, the corresponding dissolution rate of the NAP/PEG dispersion prepared at 40 °C was indeed slower than that prepared at 25 °C. The microstructure of the NAP/PEG solid dispersions and the dissolution behavior also showed a dependence on the chemical composition of the solid dispersions.


Asunto(s)
Naproxeno/química , Polietilenglicoles/química , Química Farmacéutica , Cristalización , Cinética , Solubilidad , Agua/química
10.
J Pharm Sci ; 101(11): 4201-13, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22847843

RESUMEN

The primary aim of this study was to evaluate the utility of second-order nonlinear imaging of chiral crystals (SONICC) to quantify crystallinity in drug-polymer blends, including solid dispersions. Second harmonic generation (SHG) can potentially exhibit scaling with crystallinity between linear and quadratic depending on the nature of the source, and thus, it is important to determine the response of pharmaceutical powders. Physical mixtures containing different proportions of crystalline naproxen and hydroxyl propyl methyl cellulose acetate succinate (HPMCAS) were prepared by blending and a dispersion was produced by solvent evaporation. A custom-built SONICC instrument was used to characterize the SHG intensity as a function of the crystalline drug fraction in the various samples. Powder X-ray diffraction (PXRD) and Raman spectroscopy were used as complementary methods known to exhibit linear scaling. SONICC was able to detect crystalline drug even in the presence of 99.9 wt % HPMCAS in the binary mixtures. The calibration curve revealed a linear dynamic range with a R(2) value of 0.99 spanning the range from 0.1 to 100 wt % naproxen with a root mean square error of prediction of 2.7%. Using the calibration curve, the errors in the validation samples were in the range of 5%-10%. Analysis of a 75 wt % HPMCAS-naproxen solid dispersion with SONICC revealed the presence of crystallites at an earlier time point than could be detected with PXRD and Raman spectroscopy. In addition, results from the crystallization kinetics experiment using SONICC were in good agreement with Raman spectroscopy and PXRD. In conclusion, SONICC has been found to be a sensitive technique for detecting low levels (0.1% or lower) of crystallinity, even in the presence of large quantities of a polymer.


Asunto(s)
Polvos , Calibración , Límite de Detección , Naproxeno/análisis , Difracción de Polvo , Espectrometría Raman
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA