Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
NMR Biomed ; 36(3): e4858, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36285719

RESUMEN

Acute ischemic stroke results in an ischemic core surrounded by a tissue at risk, named the penumbra, which is potentially salvageable. One way to differentiate the tissues is to measure the hypoxia status. The purpose of the current study is to correlate the abnormal brain tissue volume derived from magnetic resonance-based imaging of brain oxygen saturation (St O2 -MRI) to the fluorine-18 fluoromisonidazole ([18 F]FMISO) positron emission tomography (PET) volume for hypoxia imaging validation, and to analyze the ability of St O2 -MRI to depict the different hypoxic tissue types in the acute phase of stroke. In a pertinent model of stroke in the rat, the volume of tissue with decreased St O2 -MRI signal and that with increased uptake of [18 F]FMISO were equivalent and correlated (r = 0.706; p = 0.015). The values of St O2 in the tissue at risk were significantly greater than those quantified in the core of the lesion, and were less than those for healthy tissue (52.3% ± 2.0%; 43.3% ± 1.9%, and 67.9 ± 1.4%, respectively). A threshold value for St O2 of ≈60% as the cut-off for the identification of the tissue at risk was calculated. Tissue volumes with reduced St O2 -MRI correlated with the final lesion (r = 0.964, p < 0.0001). The findings show that the St O2 -MRI approach is sensitive for the detection of hypoxia and for the prediction of the final lesion after stroke. Once validated in acute clinical settings, this approach might be used to enhance the stratification of patients for potential therapeutic interventions.


Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Ratas , Animales , Tomografía de Emisión de Positrones , Accidente Cerebrovascular/diagnóstico por imagen , Misonidazol , Hipoxia/diagnóstico por imagen , Imagen por Resonancia Magnética , Radiofármacos
2.
Stroke ; 46(6): 1673-80, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25953371

RESUMEN

BACKGROUND AND PURPOSE: Loss of muscle mass and function is a severe complication in patients with stroke that contributes to promoting physical inactivity and disability. The deleterious consequences of skeletal muscle mass loss underline the necessity to identity the molecular mechanisms involved in skeletal muscle atrophy after cerebral ischemia. METHODS: Transient focal cerebral ischemia (60 minutes) was induced by occlusion of the right middle cerebral artery in C57BL/6J male mice. Skeletal muscles were removed 3 days later and analyzed for the regulation of critical determinants of muscle mass homeostasis (Akt/mammalian target of rapamycin pathway, myostatin-Smad2/3 and bone morphogenetic protein-Smad1/5/8 signaling pathways, ubiquitin-proteasome and autophagy-lysosome proteolytic pathways). RESULTS: Cerebral ischemia induced severe sensorimotor deficits associated with muscle mass loss of the paretic limbs. Mechanistically, cerebral ischemia repressed Akt/mammalian target of rapamycin pathway and increased expression of key players of ubiquitin-proteasome pathway (MuRF1 [muscle RING finger-1], MAFbx [muscle atrophy F-box], Musa1 [muscle ubiquitin ligase of SCF complex in atrophy-1]), together with a marked increase in myostatin expression, in both paretic and nonparetic skeletal muscles. The Smad1/5/8 pathway was also activated. CONCLUSIONS: Our data fit with a model in which a repression of Akt/mammalian target of rapamycin pathway and an increase in the expression of key players of ubiquitin-proteasome pathway are critically involved in skeletal muscle atrophy after cerebral ischemia. Cerebral ischemia also caused an activation of bone morphogenetic protein-Smad1/5/8 signaling pathway, suggesting that compensatory mechanisms are also concomitantly activated to limit the extent of skeletal muscle atrophy.


Asunto(s)
Isquemia Encefálica/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Transducción de Señal , Animales , Isquemia Encefálica/complicaciones , Isquemia Encefálica/patología , Modelos Animales de Enfermedad , Masculino , Ratones , Músculo Esquelético/patología , Atrofia Muscular/etiología , Atrofia Muscular/patología
3.
Int J Radiat Oncol Biol Phys ; 118(4): 1081-1093, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-37866760

RESUMEN

PURPOSE: Radiation therapy for brain tumors increases patient survival. Nonetheless, side effects are increasingly reported such as cognitive deficits and fatigue. The etiology of fatigue remains poorly described. Our hypothesis is that the abscopal effects of radiation therapy on skeletal muscle may be involved in fatigue. The present study aims to assess the effect of brain irradiation on skeletal muscles and its relationship with fatigue and to analyze whether physical activity could counteract brain radiation-induced side effects. METHODS AND MATERIALS: Adult Wistar rats were randomly distributed between 4 groups: control (CTL), irradiated (IR), nonirradiated with physical activity (PA), and irradiated with physical activity (IR+PA). IR rats were exposed to a whole-brain irradiation (WBI) of 30 Gy (3 × 10 Gy). Rats subjected to PA underwent sessions of running on a treadmill, 3 times/week for 6 months. The effects of WBI on muscles were evaluated by complementary approaches: behavioral tests (fatigue, locomotion activity), magnetic resonance imaging, and histologic analyses. RESULTS: IR rats displayed a significant fatigue and a reduced locomotor activity at short term compared with the CTL group, which were attenuated with PA at 6 months after WBI. The IR rat's gastrocnemius mass decreased compared with CTL rats, which was reversed by physical activity at 14 days after WBI. Multiparametric magnetic resonance imaging of the skeletal muscle highlighted an alteration of the fiber organization in IR rats as demonstrated by a significant decrease of the mean diffusivity in the gastrocnemius at short term. Alteration of fibers was confirmed by histologic analyses: the number of type I fibers was decreased, whereas that of type IIa fibers was increased in IR animals but not in the IR+PA group. CONCLUSIONS: The data show that WBI induces skeletal muscle damage, which is attenuated by PA. This muscle damage may explain, at least in part, the fatigue of patients treated with radiation therapy.


Asunto(s)
Traumatismos por Radiación , Carrera , Humanos , Ratas , Animales , Ratas Wistar , Encéfalo/efectos de la radiación , Traumatismos por Radiación/etiología , Músculo Esquelético
4.
Cancer Imaging ; 24(1): 95, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39026377

RESUMEN

BACKGROUND: Radiotherapy is a major therapeutic approach in patients with brain tumors. However, it leads to cognitive impairments. To improve the management of radiation-induced brain sequalae, deformation-based morphometry (DBM) could be relevant. Here, we analyzed the significance of DBM using Jacobian determinants (JD) obtained by non-linear registration of MRI images to detect local vulnerability of healthy cerebral tissue in an animal model of brain irradiation. METHODS: Rats were exposed to fractionated whole-brain irradiation (WBI, 30 Gy). A multiparametric MRI (anatomical, diffusion and vascular) study was conducted longitudinally from 1 month up to 6 months after WBI. From the registration of MRI images, macroscopic changes were analyzed by DBM and microscopic changes at the cellular and vascular levels were evaluated by quantification of cerebral blood volume (CBV) and diffusion metrics including mean diffusivity (MD). Voxel-wise comparisons were performed on the entire brain and in specific brain areas identified by DBM. Immunohistology analyses were undertaken to visualize the vessels and astrocytes. RESULTS: DBM analysis evidenced time-course of local macrostructural changes; some of which were transient and some were long lasting after WBI. DBM revealed two vulnerable brain areas, namely the corpus callosum and the cortex. DBM changes were spatially associated to microstructural alterations as revealed by both diffusion metrics and CBV changes, and confirmed by immunohistology analyses. Finally, matrix correlations demonstrated correlations between JD/MD in the early phase after WBI and JD/CBV in the late phase both in the corpus callosum and the cortex. CONCLUSIONS: Brain irradiation induces local macrostructural changes detected by DBM which could be relevant to identify brain structures prone to radiation-induced tissue changes. The translation of these data in patients could represent an added value in imaging studies on brain radiotoxicity.


Asunto(s)
Lesiones Encefálicas , Animales , Ratas , Masculino , Lesiones Encefálicas/etiología , Lesiones Encefálicas/diagnóstico por imagen , Lesiones Encefálicas/patología , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Traumatismos por Radiación/diagnóstico por imagen , Traumatismos por Radiación/patología , Traumatismos por Radiación/etiología , Encéfalo/efectos de la radiación , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Imagen por Resonancia Magnética/métodos , Traumatismos Experimentales por Radiación/diagnóstico por imagen , Traumatismos Experimentales por Radiación/patología , Traumatismos Experimentales por Radiación/etiología , Imágenes de Resonancia Magnética Multiparamétrica/métodos
5.
Int J Radiat Biol ; 100(5): 744-755, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38466699

RESUMEN

PURPOSES: Lymphopenia is extensively studied, but not circulating leucocyte subpopulations, which however have distinct roles in tumor tolerance. Proton therapy has been shown to have a lesser impact on the immune system than conventional X-ray radiotherapy through lower dose exposure to healthy tissues. We explored the differential effects of brain X-ray and proton irradiation on circulating leucocyte subpopulations. MATERIALS AND METHODS: Leucocyte subpopulation counts from tumor-free mice were obtained 12 hours after 4 fractions of 2.5 Gy. The relationships between irradiation type (X-rays or protons), irradiated volume (whole-brain/hemi-brain) and dose rate (1 or 2 Gy/min) with circulating leucocyte subpopulations (T-CD4+, T-CD8+, B, and NK-cells, neutrophils, and monocytes) were investigated using linear regression and tree-based modeling approaches. Relationships between dose maps (brain, vessels, lymph nodes (LNs)) and leucocyte subpopulations were analyzed and applied to construct the blood dose model, assessing the hypothesis of a direct lymphocyte-killing effect in radiation-induced lymphopenia. RESULTS: Radiation-induced lymphopenia occurred after X-ray but not proton brain irradiation in lymphoid subpopulations (T-CD4+, T-CD8+, B, and NK-cells). There was an increase in neutrophil counts following protons but not X-rays. Monocytes remained unchanged under both X-rays and protons. Besides irradiation type, irradiated volume and dose rate had a significant impact on NK-cell, neutrophil and monocyte levels but not T-CD4+, T-CD8+, and B-cells. The dose to the blood had a heterogeneous impact on leucocyte subpopulations: neutrophil counts remained stable with increasing dose to the blood, while lymphocyte counts decreased with increasing dose (T-CD8+-cells > T-CD4+-cells > B-cells > NK-cells). Direct cell-killing effect of the dose to the blood mildly contributed to radiation-induced lymphopenia. LN exposure significantly contributed to lymphopenia and partially explained the distinct impact of irradiation type on circulating lymphocytes. CONCLUSIONS: Leucocyte subpopulations reacted differently to X-ray or proton brain irradiation. This difference could be partly explained by LN exposure to radiation dose. Further researches and analyses on other biological processes and interactions between leucocyte subpopulations are ongoing. The various mechanisms underlying leucocyte subpopulation changes under different irradiation modalities may have implications for the choice of radiotherapy modalities and their combination with immunotherapy in brain cancer treatment.


Asunto(s)
Encéfalo , Leucocitos , Animales , Ratones , Encéfalo/efectos de la radiación , Leucocitos/efectos de la radiación , Linfopenia/etiología , Relación Dosis-Respuesta en la Radiación , Masculino , Rayos X , Terapia de Protones/efectos adversos , Ratones Endogámicos C57BL
6.
Autophagy ; 19(7): 1952-1981, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36622892

RESUMEN

Microglial phagocytosis of apoptotic debris prevents buildup damage of neighbor neurons and inflammatory responses. Whereas microglia are very competent phagocytes under physiological conditions, we report their dysfunction in mouse and preclinical monkey models of stroke (macaques and marmosets) by transient occlusion of the medial cerebral artery (tMCAo). By analyzing recently published bulk and single cell RNA sequencing databases, we show that the phagocytosis dysfunction was not explained by transcriptional changes. In contrast, we demonstrate that the impairment of both engulfment and degradation was related to energy depletion triggered by oxygen and nutrient deprivation (OND), which led to reduced process motility, lysosomal exhaustion, and the induction of a protective macroautophagy/autophagy response in microglia. Basal autophagy, in charge of removing and recycling intracellular elements, was critical to maintain microglial physiology, including survival and phagocytosis, as we determined both in vivo and in vitro using pharmacological and transgenic approaches. Notably, the autophagy inducer rapamycin partially prevented the phagocytosis impairment induced by tMCAo in vivo but not by OND in vitro, where it even had a detrimental effect on microglia, suggesting that modulating microglial autophagy to optimal levels may be a hard to achieve goal. Nonetheless, our results show that pharmacological interventions, acting directly on microglia or indirectly on the brain environment, have the potential to recover phagocytosis efficiency in the diseased brain. We propose that phagocytosis is a therapeutic target yet to be explored in stroke and other brain disorders and provide evidence that it can be modulated in vivo using rapamycin.Abbreviations: AIF1/IBA1: allograft inflammatory factor 1; AMBRA1: autophagy/beclin 1 regulator 1; ATG4B: autophagy related 4B, cysteine peptidase; ATP: adenosine triphosphate; BECN1: beclin 1, autophagy related; CASP3: caspase 3; CBF: cerebral blood flow; CCA: common carotid artery; CCR2: chemokine (C-C motif) receptor 2; CIR: cranial irradiation; Csf1r/v-fms: colony stimulating factor 1 receptor; CX3CR1: chemokine (C-X3-C motif) receptor 1; DAPI: 4',6-diamidino-2-phenylindole; DG: dentate gyrus; GO: Gene Ontology; HBSS: Hanks' balanced salt solution; HI: hypoxia-ischemia; LAMP1: lysosomal-associated membrane protein 1; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MCA: medial cerebral artery; MTOR: mechanistic target of rapamycin kinase; OND: oxygen and nutrient deprivation; Ph/A coupling: phagocytosis-apoptosis coupling; Ph capacity: phagocytic capacity; Ph index: phagocytic index; SQSTM1: sequestosome 1; RNA-Seq: RNA sequencing; TEM: transmission electron microscopy; tMCAo: transient medial cerebral artery occlusion; ULK1: unc-51 like kinase 1.


Asunto(s)
Autofagia , Accidente Cerebrovascular , Animales , Ratones , Autofagia/fisiología , Microglía/metabolismo , Beclina-1/metabolismo , Fagocitosis/genética , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/metabolismo , Oxígeno/farmacología , Sirolimus/farmacología
7.
Stroke ; 42(5): 1412-9, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21441158

RESUMEN

BACKGROUND AND PURPOSE: The impact of stroke on white matter is poorly described in preclinical investigations mainly based on rodents with a low white (WM)/gray matter ratio. Using diffusion tensor imaging, we evaluated WM alterations and correlated them with sensorimotor deficits after stroke in the marmoset, a nonhuman primate that displays a WM/gray matter ratio close to that of humans. METHODS: Marmosets underwent a transient brain ischemia (3-hour). Eight serial MRI examinations were made during ischemia and up to 45 days after reperfusion. The sensorimotor deficits were evaluated weekly over 45 days. To assess WM alterations, the SD of the angle of the first eigenvector projection was calculated in the cortex and in the internal and external capsules. The fiber-tracking approach was used to measure the number and the length of bundles. RESULTS: Changes in the apparent diffusion coefficient and the fractional anisotropy values were similar during the temporal evolution of the lesion in the marmoset model of ischemia to that reported in patients with stroke. Despite an absence of visible lesions on T2-MRI and diffusion tensor imaging at the chronic stage, diffusion tensor MRI evidenced alterations in WM by the increase in the standard deviation of the angle of the first eigenvector projection in the cortex, internal and external capsules, and the decrease in the number of bundles of fibers tracked. The disruption of WM was strongly correlated with the chronic sensorimotor deficits. CONCLUSIONS: Despite an absence of a visible ischemic lesion at the chronic stage, diffusion tensor MRI revealed disorganization of WM, which probably underlies the persistence of functional deficits.


Asunto(s)
Isquemia Encefálica/patología , Imagen de Difusión por Resonancia Magnética/métodos , Imagen por Resonancia Magnética/métodos , Fibras Nerviosas Mielínicas/patología , Tractos Piramidales/patología , Animales , Conducta Animal/fisiología , Isquemia Encefálica/fisiopatología , Callithrix , Modelos Animales de Enfermedad , Femenino , Masculino , Desempeño Psicomotor/fisiología , Accidente Cerebrovascular/patología , Accidente Cerebrovascular/fisiopatología
8.
Biomaterials ; 257: 120249, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32739663

RESUMEN

Approaches able to counteract, at least temporarily, hypoxia, a well-known factor of resistance to treatment in solid tumors are highly desirable. Herein, we report the use of nanosized zeolite crystals as hyperoxic/hypercapnic gas carriers for glioblastoma. First, the non-toxic profile of nanosized zeolite crystals in living animals (mice, rats and non-human primates) and in various cell types is presented. Second, the ability of the nanosized zeolites to act as a vasoactive agent for a targeted re-oxygenation of the tumor after intravenous injection is shown. As attested by an MRI protocol, the zeolites were able to increase oxygenation and blood volume specifically within the brain tumor whilst no changes in the healthy-non tumoral brain-were observed. The first proof of concept for the use of metal-containing nanosized zeolites as a tool for vectorization of hyperoxic/hypercapnic gases in glioblastoma is revealed.


Asunto(s)
Glioblastoma , Zeolitas , Animales , Gases , Imagen por Resonancia Magnética , Ratones , Ratas
9.
Neurosci Biobehav Rev ; 107: 602-614, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31553925

RESUMEN

A number of neurotoxicity associated with oncological treatments has been reported in non-central nervous system cancers. An expert group presents the state of the art and a guide to help the choice of appropriated tools to assess patient cognition in studies on oncology and neurobehavior in animal models. In addition, current cognitive rehabilitation programs currently under evaluation are also discussed. Cognitive assessments in oncology depend on the research question, study design, cognitive domains, patients' characteristics, psychometric properties of the tests, and whether the tests are supervised or not by a neuropsychologist. Batteries of electronic tests can be proposed, but several of them are characterized by weak psychometric developments. In order to improve the comprehension on the impact of cancer treatments on cognition, new animal models are in development, and would in the future include non-human primate models. By bringing together the skills and practices of oncologists, neurologists, neuropsychologists, neuroscientists, we propose a series of specific tools and tests that accompany the cognitive management of non-CNS cancer patients.


Asunto(s)
Disfunción Cognitiva/etiología , Neoplasias/complicaciones , Disfunción Cognitiva/diagnóstico , Disfunción Cognitiva/terapia , Humanos , Neoplasias/psicología , Neoplasias/terapia
10.
Stroke ; 39(2): 448-54, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18174487

RESUMEN

BACKGROUND AND PURPOSE: The study aim was to assess the effects of magnesium sulfate (MgSO(4)) administration on white matter damage in vivo in spontaneously hypertensive rats. METHODS: The left internal capsule was lesioned by a local injection of endothelin-1 (ET-1; 200 pmol) in adult spontaneously hypertensive rats. MgSO(4) was administered (300 mg/kg SC) 30 minutes before injection of ET-1, plus 200 mg/kg every hour thereafter for 4 hours. Infarct size was measured by T2-weighted magnetic resonance imaging (day 2) and histology (day 11), and functional recovery was assessed on days 3 and 10 by the cylinder and walking-ladder tests. RESULTS: ET-1 application induced a small, localized lesion within the internal capsule. Despite reducing blood pressure, MgSO(4) did not significantly influence infarct volume (by magnetic resonance imaging: median, 2.1 mm(3); interquartile range, 1.3 to 3.8, vs 1.6 mm(3) and 1.2 to 2.1, for the vehicle-treated group; by histology: 0.3 mm(3) and 0.2 to 0.9 vs 0.3 mm(3) and 0.2 to 0.5, respectively). Significant forelimb and hindlimb motor deficits were evident in the vehicle-treated group as late as day 10. These impairments were significantly ameliorated by MgSO(4) in both cylinder (left forelimb use, P<0.01 and both-forelimb use, P<0.03 vs vehicle) and walking-ladder (right hindlimb score, P<0.02 vs vehicle) tests. CONCLUSIONS: ET-1-induced internal capsule ischemia in spontaneously hypertensive rats represents a good model of lacunar infarct with small lesion size, minimal adverse effects, and a measurable motor deficit. Despite inducing mild hypotension, MgSO(4) did not significantly influence infarct size but reduced motor deficits, supporting its potential utility for the treatment of lacunar infarct.


Asunto(s)
Anticonvulsivantes/farmacología , Infarto Encefálico/tratamiento farmacológico , Isquemia Encefálica/tratamiento farmacológico , Hipertensión/complicaciones , Cápsula Interna/efectos de los fármacos , Sulfato de Magnesio/farmacología , Animales , Presión Sanguínea/efectos de los fármacos , Infarto Encefálico/inducido químicamente , Infarto Encefálico/patología , Isquemia Encefálica/inducido químicamente , Isquemia Encefálica/patología , Modelos Animales de Enfermedad , Endotelina-1 , Cápsula Interna/patología , Magnesio/sangre , Masculino , Actividad Motora/efectos de los fármacos , Fibras Nerviosas Mielínicas/efectos de los fármacos , Fibras Nerviosas Mielínicas/patología , Ratas , Ratas Endogámicas SHR , Ratas Sprague-Dawley
11.
J Cereb Blood Flow Metab ; 28(4): 786-96, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18000514

RESUMEN

The common marmoset (Callithrix jacchus), a New World monkey, has recently been used as a model of focal cerebral ischaemia. Here, we sought to develop a stroke model in this species using an intraluminal approach to occlude the middle cerebral artery (MCA). This technically simple procedure allows both transient and permanent ischaemia with minimal morbidity. Ten common marmosets underwent either transient (3 h) or permanent ischaemia by the insertion of a nylon filament through the external carotid artery up to the origin of the MCA. Cerebral blood flow (CBF) was monitored by the laser-Doppler flowmetry technique. Sensorimotor functions were regularly evaluated, and histologic, immunohistochemical, and magnetic resonance imaging analyses were performed 8 days after the occlusion. The surgical procedure was achieved straightforwardly without postoperative mortality or cerebral haemorrhage. All animals displayed a consistent decrease in CBF that remained stable over 3 h. Infarction affected both cortical and subcortical structures. Although not statistically significant, the volume of infarction was smaller in marmosets subjected to transient ischaemia compared to those permanently occluded (237+/-139 and 358+/-118 mm3, respectively). In all the behavioural tests used, reperfused marmosets exhibited fewer neurologic and functional impairments compared to permanently occluded ones. We show the feasibility of the induction of permanent or transient focal cerebral ischaemia in the marmoset using an intraluminal approach with minimal invasion. This model could be suitable as an advanced screening for potential stroke therapies in which behavioural, imaging, and histologic analyses can be compared.


Asunto(s)
Encéfalo/irrigación sanguínea , Encéfalo/cirugía , Callithrix , Modelos Animales de Enfermedad , Infarto de la Arteria Cerebral Media/fisiopatología , Procedimientos Neuroquirúrgicos/métodos , Animales , Circulación Cerebrovascular/fisiología , Femenino , Inmunohistoquímica , Infarto de la Arteria Cerebral Media/patología , Ataque Isquémico Transitorio/patología , Ataque Isquémico Transitorio/fisiopatología , Flujometría por Láser-Doppler , Imagen por Resonancia Magnética , Masculino , Recuperación de la Función , Tiempo
12.
J Neurochem ; 106(3): 1388-403, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18498438

RESUMEN

The understanding of mechanisms involved in ischaemic brain tolerance may provide new therapeutical targets for stroke. In vivo genomic studies revealed an up-regulation of adrenomedullin expression by hypoxic pre-conditioning. Furthermore, adrenomedullin reduced ischaemia-induced brain damage in rodents. However, whether adrenomedullin is involved in hypoxic pre-conditioning-induced tolerance and whether adrenomedullin protects directly neurons against ischaemia remain unknown. Using a neuronal model of hypoxic pre-conditioning and oxygen glucose deprivation (OGD), we showed that 0.1% or 0.5% of O2 pre-conditioning reduced the OGD-induced neuronal death, whereas 1% or 2% of O2 pre-treatment did not induce neuroprotection. Adrenomedullin expression increased following the hypoxic period, and following OGD only in pre-conditioned (0.1% or 0.5% of O2) neurons. Adrenomedullin pre-treatment and post-treatment reduced the OGD-induced neuronal death, partly through PI3kinase-dependent pathway. However, adrenomedullin antagonism during hypoxic pre-conditioning failed to inhibit the neuroprotection whereas adrenomedullin antagonism following OGD abolished the hypoxic pre-conditioning-induced neuroprotection. Finally, we showed that adrenomedullin is involved in neuroprotection induced by endothelial cells and microglia. In contrast, neuroprotection induced by astrocytes occurred through adrenomedullin-independent mechanisms. Altogether, our results suggest that adrenomedullin is an effector of the hypoxic pre-conditioning-induced neuronal tolerance and a potent autocrine and paracrine neuroprotective factor during cerebral ischaemia.


Asunto(s)
Adrenomedulina/fisiología , Comunicación Autocrina/fisiología , Glucosa/fisiología , Neuronas/metabolismo , Fármacos Neuroprotectores/metabolismo , Estrés Oxidativo/fisiología , Comunicación Paracrina/fisiología , Adrenomedulina/biosíntesis , Animales , Astrocitos/metabolismo , Hipoxia de la Célula/fisiología , Células Cultivadas , Glucosa/deficiencia , Ratones , Microglía/metabolismo , Neuronas/fisiología , Oxígeno , Regulación hacia Arriba/fisiología
13.
Behav Brain Res ; 352: 151-160, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28760698

RESUMEN

Stroke is a common and devastating disease worldwide. Over the last two decades, many therapeutic approaches to ameliorate ischaemic stroke have been promising in animal studies but failed when transferred to the clinical situation. One of the possible explanations for these failures is the widespread use of animal models of cerebral ischemia that do not mimic the pathology encountered in the clinic. Accordingly, many expert committees recommended the integration of higher order species such as non-human primates in pre-clinical stroke studies. The common marmoset (Callithrix jacchus), a small New World monkey, start to stand out in the neuroscience field as a good compromise between larger primates and rodents. In this review, we discuss the relevance of the use of the marmoset in stroke studies. We will focus on behavioural tests developed in this species to assess sensorimotor deficits and their recovery during acute and chronic stages of brain ischaemia. The aim of this appraisal is to provide a comprehensive overview of the existing approaches to induce stroke in the marmoset as well as the paradigms for behavioural testing in this species. The data summarized in this review should contribute to the improvement of future stoke studies in the marmoset and accordingly improve the translation of the results from bench to bed.


Asunto(s)
Conducta , Isquemia Encefálica/psicología , Callithrix , Modelos Animales de Enfermedad , Accidente Cerebrovascular/psicología , Animales , Callithrix/psicología , Humanos , Pruebas Psicológicas
14.
J Cereb Blood Flow Metab ; 38(10): 1769-1780, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-28617154

RESUMEN

Although chronic arterial hypertension (CAH) represents the major comorbid factor in stroke, it is rarely integrated in preclinical studies of stroke. The majority of those investigations employ spontaneously hypertensive rats (SHR) which display a susceptibility to ischemic damage independent of hypertension. Here, we used a renovascular model of hypertension (RH) to examine, with magnetic resonance imaging (MRI), brain alterations during the development of hypertension and after brain ischemia. We also examined whether MRI-derived parameters predict the extent of ischemia-induced brain damage. RH was induced according to the two-kidney one-clip model and multiparametric MRI was performed at 3, 6, 9, and 12 weeks after hypertension and also at 10, 50, and 60 min following stroke. Blood pressure values increased progressively and reached a plateau at 6 weeks after RH induction. At 12 weeks, all hypertensive animals displayed spontaneous brain lesions (hemorrhages, deep and cortical lesions, ventricular dilatation), increased apparent diffusion coefficient (ADC) values in the corpus callosum and higher fractional anisotropy in the cortex. Following ischemia, these animals showed larger brain lesions (406 ± 82 vs. 179 ± 36 mm3, p < 0.002) which correlated with ADC values at chronic stage of hypertension. This model of hypertension displays many characteristics of the neuropathology of human CAH. The use of this model in stroke studies is relevant and desirable.


Asunto(s)
Encéfalo/patología , Modelos Animales de Enfermedad , Hipertensión Renovascular/patología , Accidente Cerebrovascular/patología , Animales , Isquemia Encefálica/complicaciones , Isquemia Encefálica/patología , Hipertensión Renovascular/complicaciones , Masculino , Ratas Sprague-Dawley , Accidente Cerebrovascular/complicaciones
15.
Theranostics ; 8(21): 5814-5827, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30613264

RESUMEN

Alteration of the extracellular matrix (ECM) is one of the major events in the pathogenesis of brain lesions following ischemic stroke. Heparan sulfate mimetics (HSm) are synthetic pharmacologically active polysaccharides that promote ECM remodeling and tissue regeneration in various types of lesions. HSm bind to growth factors, protect them from enzymatic degradation and increase their bioavailability, which promotes tissue repair. As the ECM is altered during stroke and HSm have been shown to restore the ECM, we investigated the potential of HSm4131 (also named RGTA-4131®) to protect brain tissue and promote regeneration and plasticity after a stroke. Methods: Ischemic stroke was induced in rats using transient (1 h) intraluminal middle cerebral artery occlusion (MCAo). Animals were assigned to the treatment (HSm4131; 0.1, 0.5, 1.5, or 5 mg/kg) or vehicle control (saline) groups at different times (1, 2.5 or 6 h) after MCAo. Brain damage was assessed by MRI for the acute (2 days) and chronic (14 days) phases post-occlusion. Functional deficits were evaluated with a battery of sensorimotor behavioral tests. HSm4131-99mTc biodistribution in the ischemic brain was analyzed between 5 min and 3 h following middle cerebral artery reperfusion. Heparan sulfate distribution and cellular reactions, including angiogenesis and neurogenesis, were evaluated by immunohistochemistry, and growth factor gene expression (VEGF-A, Ang-2) was quantified by RT-PCR. Results: HSm4131, administered intravenously after stroke induction, located and remained in the ischemic hemisphere. HSm4131 conferred long-lasting neuroprotection, and significantly reduced functional deficits with no alteration of physiological parameters. It also restored the ECM, and increased brain plasticity processes, i.e., angiogenesis and neurogenesis, in the affected brain hemisphere. Conclusion: HSm represent a promising ECM-based therapeutic strategy to protect and repair the brain after a stroke and favor functional recovery.


Asunto(s)
Isquemia Encefálica/terapia , Encéfalo/patología , Encéfalo/fisiología , Matriz Extracelular/metabolismo , Glucanos/administración & dosificación , Heparitina Sulfato/administración & dosificación , Accidente Cerebrovascular/terapia , Animales , Conducta Animal , Encéfalo/diagnóstico por imagen , Modelos Animales de Enfermedad , Inmunohistoquímica , Imagen por Resonancia Magnética , Neovascularización Fisiológica , Neurogénesis , Ratas , Reacción en Cadena en Tiempo Real de la Polimerasa , Regeneración , Resultado del Tratamiento
16.
Theranostics ; 8(1): 292-303, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29290808

RESUMEN

Brain metastases develop frequently in patients with breast cancer, and present a pressing therapeutic challenge. Expression of vascular cell adhesion molecule 1 (VCAM-1) is upregulated on brain endothelial cells during the early stages of metastasis and provides a target for the detection and treatment of early brain metastases. The aim of this study was to use a model of early brain metastasis to evaluate the efficacy of α-emitting radionuclides, 149Tb, 211At, 212Pb, 213Bi and 225Ac; ß-emitting radionuclides, 90Y, 161Tb and 177Lu; and Auger electron (AE)-emitters 67Ga, 89Zr, 111In and 124I, for targeted radionuclide therapy (TRT). METHODS: Histologic sections and two photon microscopy of mouse brain parenchyma were used to inform a cylindrical vessel geometry using the Geant4 general purpose Monte Carlo (MC) toolkit with the Geant4-DNA low energy physics models. Energy deposition was evaluated as a radial function and the resulting phase spaces were superimposed on a DNA model to estimate double-strand break (DSB) yields for representative ß- and α-emitters, 177Lu and 212Pb. Relative biological effectiveness (RBE) values were determined by only evaluating DNA damage due to physical interactions. RESULTS: 177Lu produced 2.69 ± 0.08 DSB per GbpGy, without significant variation from the lumen of the vessel to a radius of 100 µm. The DSB yield of 212Pb included two local maxima produced by the 6.1 MeV and 8.8 MeV α-emissions from decay products, 212Bi and 212Po, with yields of 7.64 ± 0.12 and 9.15 ± 0.24 per GbpGy, respectively. Given its higher DSB yield 212Pb may be more effective for short range targeting of early micrometastatic lesions than 177Lu. CONCLUSION: MC simulation of a model of early brain metastases provides invaluable insight into the potential efficacy of α-, ß- and AE-emitting radionuclides for TRT. 212Pb, which has the attributes of a theranostic radionuclide since it can be used for SPECT imaging, showed a favorable dose profile and RBE.


Asunto(s)
Neoplasias Encefálicas/patología , Neoplasias Encefálicas/radioterapia , Metástasis de la Neoplasia/patología , Metástasis de la Neoplasia/radioterapia , Radioisótopos/uso terapéutico , Molécula 1 de Adhesión Celular Vascular/metabolismo , Roturas del ADN de Doble Cadena/efectos de la radiación , Humanos , Método de Montecarlo , Proteína Tumoral Controlada Traslacionalmente 1
17.
Stroke ; 38(11): 3007-15, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17901379

RESUMEN

BACKGROUND AND PURPOSE: Whereas the effects of chronic arterial hypertension on the cerebral vasculature have been widely studied, its effects on brain tissue have been studied less so. Here we examined if spontaneously hypertensive rats (SHRs) or the normotensive control Wistar Kyoto rats (WKYs) made hypertensive by renal artery stenosis (R-WKYs) are vulnerable to an excitotoxic brain lesion provoked by an overactivation of glutamate receptors. METHODS: Lesion volumes were quantified by histology in WKYs and SHRs subjected to striatal administration of N-methyl-d-aspartate (NMDA) or alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA). The expression of AMPA receptors subunits and calcium/calmodulin kinase-II alpha was analyzed by real-time polymerase chain reaction and Western blot. RESULTS: NMDA (50 and 75 nmol) induced similar lesions in both SHRs (10+/-2 mm(3) and 16+/-4 mm(3), respectively) and WKYs (11+/-2 mm(3) and 19+/-7 mm(3), respectively). However, AMPA-induced (2.5 and 5 nmol) lesions were significantly greater in 14-week-old SHRs (14+/-3 mm(3) and 20+/-5 mm(3), respectively) than WKYs (4+/-2 mm(3), P<0.05 and 7+/-4 mm(3), P<0.001, respectively). Furthermore, normotensive 7-week-old SHRs also displayed an aggravated AMPA-induced lesion compared with age-matched WKYs (10+/-3 mm(3) vs 6+/-3 mm(3); P<0.05). Neither NMDA nor AMPA produced increased lesion volumes in R-WKYs (12+/-3 mm(3) and 5+/-4 mm(3), respectively) compared with WKYs. Striatal levels of AMPA receptors subunits, GluR1 and GluR2, were not different between SHRs and WKYs. However, SHRs displayed an increase in phosphorylated form of GluR1 at Ser-831 (P<0.05), as well as in calcium/calmodulin kinase-II alpha (P<0.002). Selective inhibition of this kinase by KN-93 reduced AMPA-induced damage in SHRs (P<0.01 vs vehicle). CONCLUSIONS: These findings show that an increase in phosphorylated GluR1, which increases AMPA receptor conductance, may be involved in the vulnerability of SHRs to AMPA.


Asunto(s)
Daño Encefálico Crónico/etiología , Daño Encefálico Crónico/fisiopatología , Isquemia Encefálica/fisiopatología , Ácido Glutámico/metabolismo , Hipertensión/complicaciones , Receptores AMPA/metabolismo , Animales , Presión Sanguínea/efectos de los fármacos , Presión Sanguínea/fisiología , Daño Encefálico Crónico/genética , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Muerte Celular/efectos de los fármacos , Muerte Celular/genética , Predisposición Genética a la Enfermedad/genética , Hipertensión/genética , Hipertensión/fisiopatología , Activación del Canal Iónico/efectos de los fármacos , Activación del Canal Iónico/fisiología , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Degeneración Nerviosa/inducido químicamente , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/fisiopatología , Neurotoxinas/toxicidad , Fosforilación/efectos de los fármacos , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Receptores AMPA/agonistas , Flujo Sanguíneo Regional/efectos de los fármacos , Flujo Sanguíneo Regional/fisiología , Resistencia Vascular/efectos de los fármacos , Resistencia Vascular/fisiología , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/toxicidad
18.
J Cereb Blood Flow Metab ; 37(7): 2584-2597, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27702880

RESUMEN

The partial pressure in oxygen remains challenging to map in the brain. Two main strategies exist to obtain surrogate measures of tissue oxygenation: the tissue saturation studied by magnetic resonance imaging (StO2-MRI) and the identification of hypoxia by a positron emission tomography (PET) biomarker with 3-[18F]fluoro-1-(2-nitro-1-imidazolyl)-2-propanol ([18F]-FMISO) as the leading radiopharmaceutical. Nonetheless, a formal validation of StO2-MRI against FMISO-PET has not been performed. The objective of our studies was to compare the two approaches in (a) the normal rat brain when the rats were submitted to hypoxemia; (b) animals implanted with four tumour types differentiated by their oxygenation. Rats were submitted to normoxic and hypoxemic conditions. For the brain tumour experiments, U87-MG, U251-MG, 9L and C6 glioma cells were orthotopically inoculated in rats. For both experiments, StO2-MRI and [18F]-FMISO PET were performed sequentially. Under hypoxemia conditions, StO2-MRI revealed a decrease in oxygen saturation in the brain. Nonetheless, [18F]-FMISO PET, pimonidazole immunohistochemistry and molecular biology were insensitive to hypoxia. Within the context of tumours, StO2-MRI was able to detect hypoxia in the hypoxic models, mimicking [18F]-FMISO PET with high sensitivity/specificity. Altogether, our data clearly support that, in brain pathologies, StO2-MRI could be a robust and specific imaging biomarker to assess hypoxia.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Encéfalo/irrigación sanguínea , Glioma/diagnóstico por imagen , Hipoxia Encefálica/diagnóstico por imagen , Oxígeno/sangre , Animales , Encéfalo/diagnóstico por imagen , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Circulación Cerebrovascular/fisiología , Glioma/metabolismo , Glioma/patología , Hipoxia Encefálica/metabolismo , Imagen por Resonancia Magnética , Masculino , Trasplante de Neoplasias , Tomografía de Emisión de Positrones , Ratas Endogámicas F344 , Ratas Desnudas , Ratas Wistar
19.
Sci Rep ; 7(1): 14000, 2017 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-29070788

RESUMEN

In stroke patients, loss of skeletal muscle mass leads to prolonged weakness and less efficient rehabilitation. We previously showed that expression of myostatin, a master negative regulator of skeletal muscle mass, was strongly increased in skeletal muscle in a mouse model of stroke. We therefore tested the hypothesis that myostatin inhibition would improve recovery of skeletal muscle mass and function after cerebral ischemia. Cerebral ischemia (45 minutes) was induced by intraluminal right middle cerebral artery occlusion (MCAO). Swiss male mice were randomly assigned to Sham-operated mice (n = 10), MCAO mice receiving the vehicle (n = 15) and MCAO mice receiving an anti-myostatin PINTA745 (n = 12; subcutaneous injection of 7.5 mg.kg-1 PINTA745 immediately after surgery, 3, 7 and 10 days after MCAO). PINTA745 reduced body weight loss and improved body weight recovery after cerebral ischemia, as well as muscle strength and motor function. PINTA745 also increased muscle weight recovery 15 days after cerebral ischemia. Mechanistically, the better recovery of skeletal muscle mass in PINTA745-MCAO mice involved an increased expression of genes encoding myofibrillar proteins. Therefore, an anti-myostatin strategy can improve skeletal muscle recovery after cerebral ischemia and may thus represent an interesting strategy to combat skeletal muscle loss and weakness in stroke patients.


Asunto(s)
Desarrollo de Músculos/efectos de los fármacos , Atrofia Muscular/tratamiento farmacológico , Miostatina/antagonistas & inhibidores , Fragmentos de Péptidos/farmacología , Accidente Cerebrovascular/fisiopatología , Animales , Modelos Animales de Enfermedad , Masculino , Ratones , Atrofia Muscular/etiología , Atrofia Muscular/patología , Accidente Cerebrovascular/complicaciones
20.
J Cereb Blood Flow Metab ; 37(6): 2270-2282, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27496553

RESUMEN

The alleviation of hypoxia in glioblastoma with carbogen to improve treatment has met with limited success. Our hypothesis is that the eventual benefits of carbogen depend on the capacity for vasodilation. We examined, with MRI, changes in fractional cerebral blood volume, blood oxygen saturation, and blood oxygenation level dependent signals in response to carbogen. The analyses were performed in two xenograft models of glioma (U87 and U251) recognized to have different vascular patterns. Carbogen increased fractional cerebral blood volume, blood oxygen saturation, and blood oxygenation level dependent signals in contralateral tissues. In the tumor core and peritumoral regions, changes were dependent on the capacity to vasodilate rather than on resting fractional cerebral blood volume. In the highly vascularised U87 tumor, carbogen induced a greater increase in fractional cerebral blood volume and blood oxygen saturation in comparison to the less vascularized U251 tumor. The blood oxygenation level dependent signal revealed a delayed response in U251 tumors relative to the contralateral tissue. Additionally, we highlight the considerable heterogeneity of fractional cerebral blood volume, blood oxygen saturation, and blood oxygenation level dependent within U251 tumor in which multiple compartments co-exist (tumor core, rim and peritumoral regions). Finally, our study underlines the complexity of the flow/metabolism interactions in different models of glioblastoma. These irregularities should be taken into account in order to palliate intratumoral hypoxia in clinical trials.


Asunto(s)
Neoplasias Encefálicas/irrigación sanguínea , Dióxido de Carbono/farmacología , Circulación Cerebrovascular/efectos de los fármacos , Glioblastoma/irrigación sanguínea , Imagen por Resonancia Magnética/métodos , Oxígeno/sangre , Animales , Neoplasias Encefálicas/diagnóstico por imagen , Dióxido de Carbono/administración & dosificación , Glioblastoma/diagnóstico por imagen , Humanos , Oxígeno/administración & dosificación , Oxígeno/farmacología , Ratas Desnudas , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA