Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Med Chem ; 61(6): 2552-2570, 2018 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-29498522

RESUMEN

Soluble guanylate cyclase (sGC), the endogenous receptor for nitric oxide (NO), has been implicated in several diseases associated with oxidative stress. In a pathological oxidative environment, the heme group of sGC can be oxidized becoming unresponsive to NO leading to a loss in the ability to catalyze the production of cGMP. Recently a dysfunctional sGC/NO/cGMP pathway has been implicated in contributing to elevated intraocular pressure associated with glaucoma. Herein we describe the discovery of molecules specifically designed for topical ocular administration, which can activate oxidized sGC restoring the ability to catalyze the production of cGMP. These efforts culminated in the identification of compound (+)-23, which robustly lowers intraocular pressure in a cynomolgus model of elevated intraocular pressure over 24 h after a single topical ocular drop and has been selected for clinical evaluation.


Asunto(s)
Activadores de Enzimas/síntesis química , Activadores de Enzimas/uso terapéutico , Glaucoma/tratamiento farmacológico , Guanilil Ciclasa Soluble/efectos de los fármacos , Administración Oftálmica , Administración Tópica , Animales , Células CHO , Cricetinae , Cricetulus , GMP Cíclico/biosíntesis , Descubrimiento de Drogas , Activadores de Enzimas/administración & dosificación , Humanos , Presión Intraocular/efectos de los fármacos , Macaca fascicularis , Soluciones Oftálmicas , Oxidación-Reducción , Conejos
2.
Eur J Pharm Sci ; 41(1): 23-30, 2010 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-20553863

RESUMEN

Salt screening and selection is a well established approach for improving the properties of drug candidates, including dissolution rate and bioavailability. Typically during early development only small amounts of compound are available for solid state profiling, including salt screening. In order to probe large areas of experimental space, high-throughput screening is utilized and is often designed in a way to search for suitable crystallization parameters within hundreds or even thousands of conditions. However, the hit rate in these types of screens can be very low. In order to allow for selection of a salt form early within the drug development process whilst using smaller amounts of compounds, a screening procedure taking into account the compounds properties and the driving forces for salt formation is described. Experiments were carried out on the model compounds clotrimazole, cinnarizine itraconazole and atropine. We found an increase in crystalline hit rate for water-insoluble drugs crystallized from solutions that included at least 10% aqueous content. Conversely it was observed that compounds with greater water solubility did not benefit from aqueous content in salt screening, instead organic solvents lead to more crystalline screening hits. Results from four model compounds show that the inclusion of an aqueous component to the salt reaction can enhance the chance of salt formation and significantly improve the crystalline hit rate for low water soluble drugs.


Asunto(s)
Preparaciones Farmacéuticas/química , Sales (Química)/química , Agua/análisis , Cristalización , Cristalografía por Rayos X , Modelos Moleculares , Solubilidad
3.
Mol Pharm ; 5(6): 946-55, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-19434850

RESUMEN

Amorphous solids and crystalline salts are both of interest as a means of improving the dissolution characteristics and apparent solubility of poorly water soluble active pharmaceutical ingredients which have low bioavailability in humans. The theory and selection of both crystalline drug substance salt forms and amorphous products have been extensively studied. However, less is known about the impact of different counterions on the properties of amorphous drug substance salts. In this study, several salts of either nicardipine or propranolol were prepared and characterized with respect to glass transition temperature, crystallization tendency and moisture sorption behavior. Although the moisture sorption behavior and crystallization tendency varied depending on the counterion used, no trends were readily apparent. The glass transition temperature was found to be dependent on the counterion used to form the salt, and was higher in all instances for the salts than for the neutral compound. Several molecular descriptors were calculated for the various counterions, and multivariate analysis was used to build a model that successfully correlated Tg with a number of these parameters. Important parameters which influenced Tg included counterion pKa and electrophilicity index. In conclusion, it is apparent that, as for crystalline salts, the counterion has an effect on the properties of amorphous materials.


Asunto(s)
Nicardipino/química , Compuestos Orgánicos/química , Preparaciones Farmacéuticas/química , Propranolol/química , Sales (Química)/química , Adsorción , Química Farmacéutica , Cristalización , Vidrio/química , Humanos , Humedad , Estructura Molecular , Análisis Multivariante , Solubilidad , Tecnología Farmacéutica/métodos , Temperatura , Temperatura de Transición , Agua/química
4.
J Am Chem Soc ; 126(41): 13347-53, 2004 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-15479091

RESUMEN

The polymorphism of the simple amino acid glycine has been known for almost a century. It is also known that in aqueous solutions, at the isoelectric point (pI 5.9), the metastable alpha polymorph crystallizes, while the stable gamma form of glycine only nucleates at high and low pH. Despite the importance of understanding the process by which crystals nucleate, the solution and solid-state chemistry underlying this simple observation have never been explored. In this contribution, we have combined solution chemistry, crystallization, and crystallographic data to investigate the mechanisms by which this effect occurs. It is concluded that solution speciation and the consequent interactions between charged species and developing crystal nuclei determine the structural outcome of the crystallization process.


Asunto(s)
Glicina/química , Cristalización , Etilenodiaminas/química , Concentración de Iones de Hidrógeno , Malonatos/química , Modelos Moleculares , Soluciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA