Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Toxicol ; 43(3): 231-242, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38327194

RESUMEN

During drug discovery, small molecules are typically assayed in vitro for secondary pharmacology effects, which include ion channels relevant to cardiac electrophysiology. Compound A was an irreversible inhibitor of myeloperoxidase investigated for the treatment of peripheral artery disease. Oral doses in dogs at ≥5 mg/kg resulted in cardiac arrhythmias in a dose-dependent manner (at Cmax, free ≥1.53 µM) that progressed in severity with time. Nevertheless, a panel of 13 different cardiac ion channel (K, Na, and Ca) assays, including hERG, failed to identify pharmacologic risks of the molecule. Compound A and a related Compound B were evaluated for electrophysiological effects in the isolated rabbit ventricular wedge assay. Compounds A and B prolonged QT and Tp-e intervals at ≥1 and ≥.3 µM, respectively, and both prolonged QRS at ≥5 µM. Compound A produced early after depolarizations and premature ventricular complexes at ≥5 µM. These data indicate both compounds may be modulating hERG (Ikr) and Nav1.5 ion channels. In human IPSC cardiomyocytes, Compounds A and B prolonged field potential duration at ≥3 µM and induced cellular dysrhythmia at ≥10 and ≥3 µM, respectively. In a rat toxicology study, heart tissue: plasma concentration ratios for Compound A were ≥19X at 24 hours post-dose, indicating significant tissue distribution. In conclusion, in vitro ion channel assays may not always identify cardiovascular electrophysiological risks observed in vivo, which can be affected by tissue drug distribution. Risk for arrhythmia may increase with a "trappable" ion channel inhibitor, particularly if cardiac tissue drug levels achieve a critical threshold for pharmacologic effects.


Asunto(s)
Arritmias Cardíacas , Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Animales , Miocitos Cardíacos/efectos de los fármacos , Perros , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Conejos , Arritmias Cardíacas/inducido químicamente , Masculino , Ventrículos Cardíacos/efectos de los fármacos , Canales Iónicos/metabolismo , Femenino
2.
Cell Biol Toxicol ; 39(6): 2793-2819, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37093397

RESUMEN

GABAA receptors, members of the pentameric ligand-gated ion channel superfamily, are widely expressed in the central nervous system and mediate a broad range of pharmaco-toxicological effects including bidirectional changes to seizure threshold. Thus, detection of GABAA receptor-mediated seizure liabilities is a big, partly unmet need in early preclinical drug development. This is in part due to the plethora of allosteric binding sites that are present on different subtypes of GABAA receptors and the critical lack of screening methods that detect interactions with any of these sites. To improve in silico screening methods, we assembled an inventory of allosteric binding sites based on structural data. Pharmacophore models representing several of the binding sites were constructed. These models from the NeuroDeRisk IL Profiler were used for in silico screening of a compiled collection of drugs with known GABAA receptor interactions to generate testable hypotheses. Amoxapine was one of the hits identified and subjected to an array of in vitro assays to examine molecular and cellular effects on neuronal excitability and in vivo locomotor pattern changes in zebrafish larvae. An additional level of analysis for our compound collection is provided by pharmacovigilance alerts using FAERS data. Inspired by the Adverse Outcome Pathway framework, we postulate several candidate pathways leading from specific binding sites to acute seizure induction. The whole workflow can be utilized for any compound collection and should inform about GABAA receptor-mediated seizure risks more comprehensively compared to standard displacement screens, as it rests chiefly on functional data.


Asunto(s)
Receptores de GABA-A , Pez Cebra , Animales , Receptores de GABA-A/química , Receptores de GABA-A/metabolismo , Convulsiones/inducido químicamente , Sitios de Unión , Ácido gamma-Aminobutírico
3.
Regul Toxicol Pharmacol ; 117: 104756, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32822771

RESUMEN

Human stem cell-derived cardiomyocytes (hSC-CMs) hold great promise as in vitro models to study the electrophysiological effects of novel drug candidates on human ventricular repolarization. Two recent large validation studies have demonstrated the ability of hSC-CMs to detect drug-induced delayed repolarization and "cellrhythmias" (interrupted repolarization or irregular spontaneous beating of myocytes) linked to Torsade-de-Pointes proarrhythmic risk. These (and other) studies have also revealed variability of electrophysiological responses attributable to differences in experimental approaches and experimenter, protocols, technology platforms used, and pharmacologic sensitivity of different human-derived models. Thus, when evaluating drug-induced repolarization effects, there is a need to consider 1) the advantages and disadvantages of different approaches, 2) the need for robust functional characterization of hSC-CM preparations to define "fit for purpose" applications, and 3) adopting standardized best practices to guide future studies with evolving hSC-CM preparations. Examples provided and suggested best practices are instructional in defining consistent, reproducible, and interpretable "fit for purpose" hSC-CM-based applications. Implementation of best practices should enhance the clinical translation of hSC-CM-based cell and tissue preparations in drug safety evaluations and support their growing role in regulatory filings.


Asunto(s)
Células Madre Adultas/efectos de los fármacos , Arritmias Cardíacas/inducido químicamente , Cardiotoxinas/toxicidad , Miocitos Cardíacos/efectos de los fármacos , Guías de Práctica Clínica como Asunto/normas , Estudios de Validación como Asunto , Células Madre Adultas/patología , Células Madre Adultas/fisiología , Arritmias Cardíacas/patología , Arritmias Cardíacas/fisiopatología , Humanos , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Miocitos Cardíacos/patología
4.
Regul Toxicol Pharmacol ; 80: 348-57, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27155597

RESUMEN

Central Nervous System (CNS)-related safety concerns are major contributors to delays and failure during the development of new candidate drugs (CDs). CNS-related safety data on 141 small molecule CDs from five pharmaceutical companies were analyzed to identify the concordance between rodent multi-parameter neurofunctional assessments (Functional Observational Battery: FOB, or Irwin test: IT) and the five most common adverse events (AEs) in Phase I clinical trials, namely headache, nausea, dizziness, fatigue/somnolence and pain. In the context of this analysis, the FOB/IT did not predict the occurrence of these particular AEs in man. For AEs such as headache, nausea, dizziness and pain the results are perhaps unsurprising, as the FOB/IT were not originally designed to predict these AEs. More unexpected was that the FOB/IT are not adequate for predicting 'somnolence/fatigue' nonclinically. In drug development, these five most prevalent AEs are rarely responsible for delaying or stopping further progression of CDs. More serious AEs that might stop CD development occurred at too low an incidence rate in our clinical dataset to enable translational analysis.


Asunto(s)
Conducta Animal/efectos de los fármacos , Enfermedades del Sistema Nervioso Central/inducido químicamente , Sistema Nervioso Central/efectos de los fármacos , Ensayos Clínicos Fase I como Asunto , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/etiología , Pruebas de Toxicidad/métodos , Animales , Sistema Nervioso Central/fisiopatología , Enfermedades del Sistema Nervioso Central/fisiopatología , Relación Dosis-Respuesta a Droga , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/fisiopatología , Humanos , Ratones , Ratas , Reproducibilidad de los Resultados , Medición de Riesgo , Especificidad de la Especie
5.
J Pharmacol Toxicol Methods ; 123: 107297, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37499956

RESUMEN

INTRODUCTION: In the framework of the IMI2-NeuroDeRisk consortium, three in vitro electrophysiology assays were compared to improve preclinical prediction of seizure-inducing liabilities. METHODS: Two cell models, primary rat cortical neurons and human induced pluripotent stem cell (hiPSC)-derived glutamatergic neurons co-cultured with hiPSC-derived astrocytes were tested on two different microelectrode array (MEA) platforms, Maestro Pro (Axion Biosystems) and Multiwell-MEA-System (Multi Channel Systems), in three separate laboratories. Pentylenetetrazole (PTZ) and/or picrotoxin (PTX) were included in each plate as positive (n = 3-6 wells) and ≤0.2% DMSO was used as negative controls (n = 3-12 wells). In general, concentrations in a range of 0.1-30 µM were tested, anchored, when possible, on clinically relevant exposures (unbound Cmax) were tested. Activity thresholds for drug-induced changes were set at 20%. To evaluate sensitivity, specificity and predictivity of the cell models, seizurogenic responses were defined as changes in 4 or more endpoints. Concentration dependence trends were also considered. RESULTS: Neuronal activity of 33 compounds categorized as positive tool drugs, seizure-positive or seizure-negative compounds was evaluated. Acute drug effects (<60 min) were compared to baseline recordings. Time points < 15 min exhibited stronger, less variable responses to many of the test agents. For many compounds a reduction and cessation of neuronal activity was detected at higher test concentrations. There was not a single pattern of seizurogenic activity detected, even among tool compounds, likely due to different mechanisms of actions and/or off-target profiles. A post-hoc analysis focusing on changes indicative of neuronal excitation is presented. CONCLUSION: All cell models showed good sensitivity, ranging from 70 to 86%. Specificity ranged from 40 to 70%. Compared to more conventional measurements of evoked activity in hippocampal slices, these plate-based models provide higher throughput and the potential to study subacute responses. Yet, they may be limited by the random, spontaneous nature of their network activity.


Asunto(s)
Células Madre Pluripotentes Inducidas , Ratas , Humanos , Animales , Microelectrodos , Células Cultivadas , Convulsiones/inducido químicamente , Neuronas
6.
ChemMedChem ; 18(11): e202300051, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36988034

RESUMEN

The inhibition of the YAP-TEAD protein-protein interaction constitutes a promising therapeutic approach for the treatment of cancers linked to the dysregulation of the Hippo signaling pathway. The identification of a class of small molecules which potently inhibit the YAP-TEAD interaction by binding tightly to the Ω-loop pocket of TEAD has previously been communicated. This report details the further multi-parameter optimization of this class of compounds resulting in advanced analogs combining nanomolar cellular potency with a balanced ADME and off-target profile, and efficacy of these compounds in tumor bearing mice is demonstrated for the first time.


Asunto(s)
Neoplasias , Factores de Transcripción , Animales , Ratones , Factores de Transcripción/metabolismo , Proteínas Señalizadoras YAP
7.
Toxicol Sci ; 180(2): 356-368, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33483756

RESUMEN

Substantial efforts have been recently committed to develop coronavirus disease-2019 (COVID-19) medications, and Hydroxychloroquine alone or in combination with Azithromycin has been promoted as a repurposed treatment. Although these drugs may increase cardiac toxicity risk, cardiomyocyte mechanisms underlying this risk remain poorly understood in humans. Therefore, we evaluated the proarrhythmia risk and inotropic effects of these drugs in the cardiomyocyte contractility-based model of the human heart. We found Hydroxychloroquine to have a low proarrhythmia risk, whereas Chloroquine and Azithromycin were associated with high risk. Hydroxychloroquine proarrhythmia risk changed to high with low level of K+, whereas high level of Mg2+ protected against proarrhythmic effect of high Hydroxychloroquine concentrations. Moreover, therapeutic concentration of Hydroxychloroquine caused no enhancement of elevated temperature-induced proarrhythmia. Polytherapy of Hydroxychloroquine plus Azithromycin and sequential application of these drugs were also found to influence proarrhythmia risk categorization. Hydroxychloroquine proarrhythmia risk changed to high when combined with Azithromycin at therapeutic concentration. However, Hydroxychloroquine at therapeutic concentration impacted the cardiac safety profile of Azithromycin and its proarrhythmia risk only at concentrations above therapeutic level. We also report that Hydroxychloroquine and Chloroquine, but not Azithromycin, decreased contractility while exhibiting multi-ion channel block features, and Hydroxychloroquine's contractility effect was abolished by Azithromycin. Thus, this study has the potential to inform clinical studies evaluating repurposed therapies, including those in the COVID-19 context. Additionally, it demonstrates the translational value of the human cardiomyocyte contractility-based model as a key early discovery path to inform decisions on novel therapies for COVID-19, malaria, and inflammatory diseases.


Asunto(s)
Antivirales/efectos adversos , Tratamiento Farmacológico de COVID-19 , Cardiotoxicidad , Cloroquina/efectos adversos , Hidroxicloroquina/efectos adversos , Miocitos Cardíacos/efectos de los fármacos , Adulto , Anciano , Anciano de 80 o más Años , Antivirales/administración & dosificación , Azitromicina/administración & dosificación , Azitromicina/efectos adversos , Cloroquina/administración & dosificación , Femenino , Humanos , Hidroxicloroquina/administración & dosificación , Masculino , Persona de Mediana Edad , Medición de Riesgo , SARS-CoV-2 , Estados Unidos
8.
Clin Pharmacol Ther ; 109(2): 310-318, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32866317

RESUMEN

Defining an appropriate and efficient assessment of drug-induced corrected QT interval (QTc) prolongation (a surrogate marker of torsades de pointes arrhythmia) remains a concern of drug developers and regulators worldwide. In use for over 15 years, the nonclinical International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use (ICH) S7B and clinical ICH E14 guidances describe three core assays (S7B: in vitro hERG current & in vivo QTc studies; E14: thorough QT study) that are used to assess the potential of drugs to cause delayed ventricular repolarization. Incorporating these assays during nonclinical or human testing of novel compounds has led to a low prevalence of QTc-prolonging drugs in clinical trials and no new drugs having been removed from the marketplace due to unexpected QTc prolongation. Despite this success, nonclinical evaluations of delayed repolarization still minimally influence ICH E14-based strategies for assessing clinical QTc prolongation and defining proarrhythmic risk. In particular, the value of ICH S7B-based "double-negative" nonclinical findings (low risk for hERG block and in vivo QTc prolongation at relevant clinical exposures) is underappreciated. These nonclinical data have additional value in assessing the risk of clinical QTc prolongation when clinical evaluations are limited by heart rate changes, low drug exposures, or high-dose safety considerations. The time has come to meaningfully merge nonclinical and clinical data to enable a more comprehensive, but flexible, clinical risk assessment strategy for QTc monitoring discussed in updated ICH E14 Questions and Answers. Implementing a fully integrated nonclinical/clinical risk assessment for compounds with double-negative nonclinical findings in the context of a low prevalence of clinical QTc prolongation would relieve the burden of unnecessary clinical QTc studies and streamline drug development.


Asunto(s)
Drogas en Investigación/efectos adversos , Síndrome de QT Prolongado/inducido químicamente , Animales , Arritmias Cardíacas/inducido químicamente , Desarrollo de Medicamentos/métodos , Industria Farmacéutica/métodos , Electrocardiografía/métodos , Humanos , Medición de Riesgo , Torsades de Pointes/inducido químicamente
9.
Expert Opin Drug Discov ; 15(6): 719-729, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32129680

RESUMEN

INTRODUCTION: Human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) preparations are increasingly employed in in vitro cardiac safety studies to support candidate drug selection and regulatory submissions. The value of hiPSC-CM-based approaches depends on their ability to recapitulate the cellular mechanisms responsible for cardiotoxicity as well as overall assay characteristics (thus defining model performance). Different expectations at different drug development stages define the utility of these human-derived models. AREAS COVERED: Herein, the authors review the importance of understanding the functional characteristics of the evolving spectrum of simpler (2D) and more complex (co-cultures, 3D constructs, and engineered tissues) human-derived cardiac preparations, and how their performance may be evaluated based on analytical sensitivity, variability, and reproducibility in order to correctly match preparations with expectations of different safety assays. The need for consensus clinical examples of electrophysiologic, contractile, and structural cardiotoxicities essential for benchmarking human-derived models is also discussed. EXPERT OPINION: It is helpful (but not essential) that hiPSC-CMs preparations fully recapitulate pharmacological responses of native adult human ventricular myocytes when evaluating cardiotoxicity in vitro. Further calibration and model standardization (aligning concordance with clinical findings) are necessary to understand the role of hiPSC-CMs in guiding cardiotoxicity assessments in early drug discovery efforts.


Asunto(s)
Cardiotoxicidad/fisiopatología , Desarrollo de Medicamentos/métodos , Miocitos Cardíacos/efectos de los fármacos , Adulto , Animales , Cardiotoxicidad/etiología , Descubrimiento de Drogas/métodos , Humanos , Células Madre Pluripotentes Inducidas/citología , Miocitos Cardíacos/patología , Reproducibilidad de los Resultados
10.
J Pharmacol Toxicol Methods ; 105: 106919, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33011055

RESUMEN

Clinical development of compounds that carry a convulsion liability is typically limited by safety margins based on the most sensitive nonclinical species. To better understand differences in sensitivity to drug-induced convulsion of commonly used preclinical species, a survey was distributed amongst pharmaceutical companies through an IQ consortium (International Consortium for Innovation and Quality in Pharmaceutical Development) resulting in convulsion-related data on 80 unique compounds from 11 companies. The lowest free drug plasma concentration at which convulsions were observed and the no observed effect level for convulsions were compared between species to determine their relative sensitivity. Additionally, data were collected on other endpoints including use of electroencephalography, premonitory signs, convulsion type, the reason why development was stopped, and the highest development phase reached. The key outcomes were: (1) the dog was most often determined to be the most sensitive species by both non-exposure and exposure-based analyses, (2) there was not a clear sensitivity ranking of other species (NHP, rat and mouse), (3) CNS symptoms were frequently present at exposures that were not associated with convulsions, but no single reliable premonitory indicator of convulsion was identified, and (4) the lack of convulsions in the compounds that were tested in humans in this dataset may suggest that convulsion liability is well mitigated via current drug development strategies.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/etiología , Preparaciones Farmacéuticas/administración & dosificación , Convulsiones/inducido químicamente , Animales , Desarrollo de Medicamentos/métodos , Evaluación Preclínica de Medicamentos/métodos , Electroencefalografía/métodos , Humanos , Ratones , Ratas , Sensibilidad y Especificidad
11.
J Pharmacol Toxicol Methods ; 103: 106683, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32105757

RESUMEN

Clinical development of compounds that carry a convulsion liability is typically limited by safety margins based on the most sensitive nonclinical species. To better understand differences in sensitivity to drug-induced convulsion of commonly used nonclinical species, a survey was distributed amongst pharmaceutical companies through an IQ consortium (International Consortium for Innovation and Quality in Pharmaceutical Development) resulting in convulsion-related data on 80 unique compounds from 11 companies. The lowest free drug plasma concentration at which convulsions were observed and the no observed effect level for convulsions were compared between species to determine their relative sensitivity. Additionally, data were collected on other endpoints including use of electroencephalography, premonitory signs, convulsion type, the reason why development was stopped, and the highest development phase reached. The key outcomes were: (1) the dog was most often determined to be the most sensitive species by both non-exposure and exposure-based analyses, (2) there was not a clear sensitivity ranking of other species (NHP, rat and mouse), (3) CNS symptoms were frequently present at exposures that were not associated with convulsions, but no single reliable premonitory indicator of convulsion was identified, and (4) the lack of convulsions when compounds were tested in humans in this dataset may suggest that convulsion liability is well mitigated via current drug development strategies.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Convulsiones/inducido químicamente , Animales , Perros , Desarrollo de Medicamentos , Electroencefalografía , Haplorrinos , Humanos , Ratones , Ratas , Especificidad de la Especie , Encuestas y Cuestionarios
12.
J Pharmacol Toxicol Methods ; 105: 106917, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32866658

RESUMEN

In nonclinical toxicology the highest dose or exposure without test article-related adverse effects, known as the No Observed Adverse Effect Level (NOAEL), is a variable that may be determined. In safety pharmacology the vast majority of the endpoints measured are quantitative numeric functional endpoints such as changes in heart rate, blood pressure or respiratory frequency, endpoints that are usually not assessed using a defined framework of adversity. Therefore, we asked the question: is there a role for the NOAEL in safety pharmacology? To help answer this question, we conducted a survey via the Safety Pharmacology Society. We found that within safety pharmacology there is no formal definition of adversity and no guidance on defining NOAEL. We also found, perhaps unsurprisingly, there is no agreed rubric for using a NOAEL in safety pharmacology and we learned that the NOAEL is not a requirement in order to progress a new investigational drug through the regulatory process. Thus, a summary label such as NOAEL lacks nuance and disregards context in relation to the nature and the severity of the safety pharmacology findings. Consequently, defining 'adversity' and determining a NOAEL in safety pharmacology studies are not recommended since the range of functional endpoints investigated do not conform to a binary 'toxic/non-toxic' rubric. Focusing on describing test article-related effects on safety pharmacology endpoints, using reasoned arguments as part of an integrated risk assessment, will ensure that the clinical pharmacologists and regulatory bodies see a clear description of relevant findings at each dose or exposure level.


Asunto(s)
Drogas en Investigación/efectos adversos , Farmacología/métodos , Pruebas de Toxicidad/métodos , Animales , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Humanos , Nivel sin Efectos Adversos Observados , Medición de Riesgo/métodos
13.
J Med Chem ; 63(14): 7773-7816, 2020 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-32634310

RESUMEN

Since their discovery over 5 decades ago, quinolone antibiotics have found enormous success as broad spectrum agents that exert their activity through dual inhibition of bacterial DNA gyrase and topoisomerase IV. Increasing rates of resistance, driven largely by target-based mutations in the GyrA/ParC quinolone resistance determining region, have eroded the utility and threaten the future use of this vital class of antibiotics. Herein we describe the discovery and optimization of a series of 4-(aminomethyl)quinolin-2(1H)-ones, exemplified by 34, that inhibit bacterial DNA gyrase and topoisomerase IV and display potent activity against ciprofloxacin-resistant Gram-negative pathogens. X-ray crystallography reveals that 34 occupies the classical quinolone binding site in the topoisomerase IV-DNA cleavage complex but does not form significant contacts with residues in the quinolone resistance determining region.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana/efectos de los fármacos , Fluoroquinolonas/farmacología , Bacterias Gramnegativas/efectos de los fármacos , Inhibidores de Topoisomerasa II/farmacología , Antibacterianos/síntesis química , Antibacterianos/metabolismo , Antibacterianos/toxicidad , Sitios de Unión , Línea Celular Tumoral , Girasa de ADN/metabolismo , Topoisomerasa de ADN IV/antagonistas & inhibidores , Topoisomerasa de ADN IV/química , Fluoroquinolonas/síntesis química , Fluoroquinolonas/metabolismo , Fluoroquinolonas/toxicidad , Bacterias Gramnegativas/enzimología , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Relación Estructura-Actividad , Inhibidores de Topoisomerasa II/síntesis química , Inhibidores de Topoisomerasa II/metabolismo , Inhibidores de Topoisomerasa II/toxicidad
14.
J Pharmacol Toxicol Methods ; 100: 106602, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31238094

RESUMEN

Regulatory guidelines recommend specialised safety pharmacology assessments in animals to characterise drug-induced effects on the central nervous system (CNS) prior to first-in-human trials, including the functional observational battery or Irwin test (here collectively termed neurofunctional assessments). These assessments effectively detect overtly neurotoxic drugs; however, the suitability of the in vivo assessments to readily detect more subtle drug effects on the nervous system has been questioned. A survey was formulated by an international expert working group convened by the (NC3Rs) to capture practice in CNS neurofunctional assessment tests and opinions on the perceived impact of in vivo test battery endpoints. Impact was defined as "the impact of measures alone/in combination on decision making in drug development or candidate selection when using the neurofunctional assessment". The results demonstrate that rodents are predominantly used for small molecule assessments, whereas non-rodents are frequently used to test biotherapeutics. Practice varied between respondents in terms of experimental design. Subsets of test battery endpoints were consistently considered highly impactful (e.g. convulsions, stereotypic behaviors); however, the perceived impact level of other endpoints varied depending whether drugs were designed for CNS targets. Many endpoints were considered to have no or minimal impact, whereas a subset of endpoints in CNS test batteries appears more impactful than others. A critical evaluation is required to assess whether the translational value of CNS in vivo safety pharmacology assessments could be increased by modifying or augmenting standard CNS test batteries. A revised approach to CNS safety assessment has the potential to reduce animal numbers without compromising patient safety.


Asunto(s)
Desarrollo de Medicamentos/métodos , Evaluación Preclínica de Medicamentos/métodos , Modelos Animales , Farmacología/métodos , Animales , Sistema Nervioso Central/efectos de los fármacos , Desarrollo de Medicamentos/legislación & jurisprudencia , Desarrollo de Medicamentos/estadística & datos numéricos , Evaluación Preclínica de Medicamentos/estadística & datos numéricos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/prevención & control , Humanos , Farmacología/legislación & jurisprudencia , Proyectos de Investigación/legislación & jurisprudencia , Proyectos de Investigación/estadística & datos numéricos , Encuestas y Cuestionarios
15.
Artículo en Inglés | MEDLINE | ID: mdl-29940218

RESUMEN

INTRODUCTION: Since 2005 the S7B and E14 guidances from ICH and FDA have been in place to assess a potential drug candidate's ability to cause long QT syndrome. To refine these guidelines, the FDA proposed the Comprehensive in vitro Proarrhythmia Assay (CiPA) initiative, where the assessment of drug effects on cardiac repolarization was one subject of investigation. Within the myocyte validation study, effects of pharmaceutical compounds on human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) were assessed and this article will focus on the evaluation of the proarrhythmic potential of 23 blinded drugs in four hiPSC-CM cell lines. METHODS: Experiments were performed on the CardioExcyte 96 at different sites. A combined readout of contractility (via impedance) and electrophysiology endpoints (field potentials) was performed. RESULTS: Our data demonstrates that hERG blockers such as dofetilide and further high risk categorized compounds prolong the field potential duration. Arrhythmia were detected in both impedance as well as field potential recordings. Intermediate risk compounds induced arrhythmia in almost all cases at the highest dose. In the case of low risk compounds, either a decrease in FPDmax was observed, or not a significant change from pre-addition control values. DISCUSSION: With exceptions, hiPSC-CMs are sensitive and exhibit at least 10% delayed or shortened repolarization from pre-addition values and arrhythmia after drug application and thus can provide predictive cardiac electrophysiology data. The baseline electrophysiological parameters vary between iPS cells from different sources, therefore positive and negative control recordings are recommended.


Asunto(s)
Antiarrítmicos/farmacología , Impedancia Eléctrica , Acoplamiento Excitación-Contracción/efectos de los fármacos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Línea Celular , Células Cultivadas , Disopiramida/farmacología , Evaluación Preclínica de Medicamentos/métodos , Evaluación Preclínica de Medicamentos/normas , Acoplamiento Excitación-Contracción/fisiología , Humanos , Células Madre Pluripotentes Inducidas/fisiología , Miocitos Cardíacos/fisiología , Fenetilaminas/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Sulfonamidas/farmacología
16.
Prog Biophys Mol Biol ; 90(1-3): 414-43, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16321428

RESUMEN

Blockade of the delayed rectifier potassium channel current, I(Kr), has been associated with drug-induced QT prolongation in the electrocardiogram and life-threatening cardiac arrhythmias. However, it is increasingly clear that compound-induced interactions with multiple cardiac ion channels may significantly affect QT prolongation that would result from inhibition of only I(Kr) [Redfern, W.S., Carlsson, L., et al., 2003. Relationships between preclinical cardiac electrophysiology, clinical QT interval prolongation and torsade de pointes for a broad range of drugs: evidence for a provisional safety margin in drug development. Cardiovasc. Res. 58(1), 32-45]. Such an assessment may not be feasible in vitro, due to multi-factorial processes that are also time-dependent and highly non-linear. Limited preclinical data, I(Kr) hERG assay and canine Purkinje fiber (PF) action potentials (APs) [Gintant, G.A., Limberis, J.T., McDermott, J.S., Wegner, C.D., Cox, B.F., 2001. The canine Purkinje fiber: an in vitro model system for acquired long QT syndrome and drug-induced arrhythmogenesis. J. Cardiovasc. Pharmacol. 37(5), 607-618], were used for two test compounds in a systems-based modeling platform of cardiac electrophysiology [Muzikant, A.L., Penland, R.C., 2002. Models for profiling the potential QT prolongation risk of drugs. Curr. Opin. Drug. Discov. Dev. 5(1), 127-35] to: (i) convert a canine myocyte model to a PF model by training functional current parameters to the AP data; (ii) reverse engineer the compounds' effects on five channel currents other than I(Kr), predicting significant IC(50) values for I(Na+), sustained and I(Ca2+), L-type , which were subsequently experimentally validated; (iii) use the predicted (I(Na+), sustained and I(Ca2+), L-type) and measured (I(Kr)) IC(50) values to simulate dose-dependent effects of the compounds on APs in endocardial, mid-myocardial, and epicardiac ventricular cells; and (iv) integrate the three types of cellular responses into a tissue-level spatial model, which quantifiably predicted no potential for the test compounds to induce either QT prolongation or increased transmural dispersion of repolarization in a dose-dependent and reverse rate-dependent fashion, despite their inhibition of I(Kr) in vitro.


Asunto(s)
Antiarrítmicos/uso terapéutico , Simulación por Computador , Síndrome de QT Prolongado/tratamiento farmacológico , Torsades de Pointes/tratamiento farmacológico , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Perros , Evaluación Preclínica de Medicamentos , Electrocardiografía , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/fisiopatología , Canales Iónicos/efectos de los fármacos , Canales Iónicos/fisiología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/fisiología , Ramos Subendocárdicos/efectos de los fármacos , Ramos Subendocárdicos/fisiopatología
17.
Artículo en Inglés | MEDLINE | ID: mdl-27913272

RESUMEN

The Safety Pharmacology Society (SPS) held a Northeast (NE) regional meeting in Boston, MA on May 13, 2016 at the Vertex Pharmaceuticals Incorporated site. There were 103 attendees from the pharmaceutical industry, contract research organizations (CROs), academia, and global regulatory agencies. An assortment of scientific topics were presented by 7 speakers that included broad topics in the cardiovascular (organ on chip, statistical power and translation of rat cardiovascular telemetry data and dual inhibition of IKr and IKs on QT interval prolongation) and central nervous system (in vitro platform for neurotoxicity, an integrated risk assessment of suicidal ideation and behavior, and EEG advances in safety pharmacology) and a novel topic discussing preclinical challenges faced in the development of a novel gene therapy. A highlight of the meeting was an in-depth discussion on the fatty acid acyl hydrolase (FAAH) inhibitor BIA 10-2474 which involved a comprehensive overview of the biology and pharmacology of FAAH followed by a presentation from the Biotrial (Rennes, France) team that conducted the clinical trial. An additional poster session was held that included 13 fascinating posters on cutting edge safety pharmacology topics.


Asunto(s)
Congresos como Asunto/tendencias , Industria Farmacéutica/tendencias , Invenciones/tendencias , Sociedades Farmacéuticas/tendencias , Animales , Evaluación Preclínica de Medicamentos/métodos , Evaluación Preclínica de Medicamentos/tendencias , Industria Farmacéutica/métodos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/prevención & control , Humanos
18.
J Pharmacol Toxicol Methods ; 88(Pt 1): 85-91, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28797763

RESUMEN

INTRODUCTION: Safety pharmacology is a growing discipline with scientists broadly distributed across international geographical regions. This electronic salary survey is the first to be distributed amongst the entire Safety Pharmacology Society (SPS) membership. An electronic survey was sent to all members of the Society. Categorical survey questions assessed membership employment types, annual incomes, and professional certifications, along with other associated career attributes. METHODS: This survey was distributed to the SPS membership that is comprised of safety pharmacologists, toxicologists and pharmacologists working globally in the pharmaceutical industry, at contract research organizations (CRO), regulatory agencies, and academia or within the technology provider industry. The survey was open for responses from December 2015 to March 2016. RESULTS: The survey response rate was 28% (129/453). North America (68%) was the region with the largest number of respondents followed by Europe (28%). A preponderance of respondents (77%) had 12years of industry experience or more. 52% of responders earned annually between $40,000 and $120,000. As expected, salary was generally positively correlated with the number of years of experience in the industry or the educational background but there was no correlation between salary and the number of employee's directly supervised. The median salary was higher for male vs female respondents, but so was median age, indicative of no gender 'salary gap'. DISCUSSION: Our 2016 SPS salary survey results showcased significant diversity regarding factors that can influence salary compensation within this discipline. These data provided insights into the complex global job market trends. They also revealed the level of scientific specialization embedded within the organization, presently uniquely positioned to support the dynamic career paths of current and future safety pharmacologists.


Asunto(s)
Farmacología/economía , Salarios y Beneficios/estadística & datos numéricos , Sociedades/economía , Toxicología/economía , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Encuestas y Cuestionarios
19.
Toxicol Sci ; 158(1): 164-175, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28453742

RESUMEN

Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) may serve as a new assay for drug testing in a human context, but their validity particularly for the evaluation of inotropic drug effects remains unclear. In this blinded analysis, we compared the effects of 10 indicator compounds with known inotropic effects in electrically stimulated (1.5 Hz) hiPSC-CM-derived 3-dimensional engineered heart tissue (EHT) and human atrial trabeculae (hAT). Human EHTs were prepared from iCell hiPSC-CM, hAT obtained at routine heart surgery. Mean intra-batch variation coefficient in baseline force measurement was 17% for EHT and 49% for hAT. The PDE-inhibitor milrinone did not affect EHT contraction force, but increased force in hAT. Citalopram (selective serotonin reuptake inhibitor), nifedipine (LTCC-blocker) and lidocaine (Na+ channel-blocker) had negative inotropic effects on EHT and hAT. Formoterol (beta-2 agonist) had positive lusitropic but no inotropic effect in EHT, and positive clinotropic, lusitropic, and inotropic effects in hAT. Tacrolimus (calcineurin-inhibitor) had a negative inotropic effect in EHTs, but no effect in hAT. Digoxin (Na+-K+-ATPase-inhibitor) showed a positive inotropic effect only in EHTs, but no effect in hAT probably due to short incubation time. Ryanodine (ryanodine receptor-inhibitor) reduced contraction force in both models. Rolipram and acetylsalicylic acid showed noninterpretable results in hAT. Contraction amplitude and kinetics were more stable over time and less variable in hiPSC-EHTs than hAT. HiPSC-EHT faithfully detected cAMP-dependent and -independent positive and negative inotropic effects, but limited beta-2 adrenergic or PDE3 effects, compatible with an immature CM phenotype.


Asunto(s)
Atrios Cardíacos/citología , Células Madre Pluripotentes Inducidas/citología , Miocitos Cardíacos/citología , Ingeniería de Tejidos , Calcio/metabolismo , Atrios Cardíacos/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Infarto del Miocardio , Miocitos Cardíacos/metabolismo , Control de Calidad , Transcriptoma
20.
Toxicol Sci ; 153(1): 39-54, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27255383

RESUMEN

Histone deacetylase (HDAC) inhibitors are an emerging class of anticancer agents that modify gene expression by altering the acetylation status of lysine residues of histone proteins, thereby inducing transcription, cell cycle arrest, differentiation, and cell death or apoptosis of cancer cells. In the clinical setting, treatment with HDAC inhibitors has been associated with delayed cardiac repolarization and in rare instances a lethal ventricular tachyarrhythmia known as torsades de pointes. The mechanism(s) of HDAC inhibitor-induced effects on cardiac repolarization is unknown. We demonstrate that administration of structurally diverse HDAC inhibitors to dogs causes delayed but persistent increases in the heart rate corrected QT interval (QTc), an in vivo measure of cardiac repolarization, at timepoints far removed from the Tmax for parent drug and metabolites. Transcriptional profiling of ventricular myocardium from dogs treated with various HDAC inhibitors demonstrated effects on genes involved in protein trafficking, scaffolding and insertion of various ion channels into the cell membrane as well as genes for specific ion channel subunits involved in cardiac repolarization. Extensive in vitro ion channel profiling of various structural classes of HDAC inhibitors (and their major metabolites) by binding and acute patch clamp assays failed to show any consistent correlations with direct ion channel blockade. Drug-induced rescue of an intracellular trafficking-deficient mutant potassium ion channel, hERG (G601S), and decreased maturation (glycosylation) of wild-type hERG expressed by CHO cells in vitro correlated with prolongation of QTc intervals observed in vivo The results suggest that HDAC inhibitor-induced prolongation of cardiac repolarization may be mediated in part by transcriptional changes of genes required for ion channel trafficking and localization to the sarcolemma. These data have broad implications for the development of these drug classes and suggest that the optimal time to assess potentially transcriptionally mediated physiologic effects will be delayed relative to an epigenetic drug's Tmax/Cmax.


Asunto(s)
Corazón/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Transcripción Genética , Animales , Transporte Biológico , Perros , Corazón/fisiología , Inhibidores de Histona Desacetilasas/farmacocinética , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA