Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
RSC Adv ; 14(8): 5234-5247, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38343996

RESUMEN

Transition metal dichalcogenides are at the center of intense scientific activity due to their promising applications, as well as the growing interest in basic research related to their electronic and dielectric properties. The layered structure of single-(ML) and two-layer (2ML) samples presents exciting features for light-matter interaction, electron transport, and electronic and optoelectronic applications. Lattice vibrations and electron-phonon interactions are essential for studying the above mentioned topics. Phonon spectra in ML and 2ML of MoX2 and WX2 (X = S, Se, and Te) families are studied using first principles calculations. A comprehensive analysis of the two-dimensional optical-phonon dispersion laws is performed, and the results illustrate the main differences between ML and 2ML for each considered semiconductor. Taking advantage of ab initio calculations, a generalization of the phenomenological Born-Huang dielectric model for long-wavelength vibrational modes around the Γ-point of the Brillouin zone (BZ) in 2ML structures is implemented. Explicit expressions are derived for the optical phonon dispersion of in-plane and out-of-plane normal modes. The set of characteristic parameters describing each long-wavelength optical branch is resolved from a direct comparison with the exact dispersion laws provided using the first principles calculations. The long-range electron-phonon Pekar-Fröhlich (PF) interaction and intra-valley electron scattering rates at the K-point of the BZ via E' (LO) and Eul longitudinal optical oscillations are examined for the ML and 2ML structures, respectively. The non-local macroscopic screening and the coupling between the in-plane electric field and longitudinal optical mechanical oscillation, profoundly affect the PF Hamiltonian and the carrier inverse relaxation time.

2.
Sci Rep ; 14(1): 12857, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38834720

RESUMEN

Magneto-optical measurements are fundamental research tools that allow for studying the hitherto unexplored optical transitions and the related applications of topological two-dimensional (2D) transition metal dichalcogenides (TMDs). A theoretical model is developed for the first-order magneto-resonant Raman scattering in a monolayer of TMD. A significant number of avoided crossing points involving optical phonons in the magneto-polaron (MP) spectrum, a superposition of the electron and hole states in the excitation branches, and their manifestations in optical transitions at various light scattering configurations are unique features for these 2D structures. The Raman intensity reveals three resonant splittings of double avoided-crossing levels. The three excitation branches are present in the MP spectrum provoked by the coupling of the Landau levels in the conduction and valence bands via an out-of-plane A 1 -optical phonon mode. The energy gaps at the anticrossing points in the MP scattering spectrum are revealed as a function of the electron and hole optical deformation potential constants. The resonant MP Raman scattering efficiency profile allows for quantifying the relative contribution of the conduction and valence bands in the formation of MPs. The results obtained are a guideline for controlling MP effects on the magneto-optical properties of TMD semiconductors, which open pathways to novel optoelectronic devices based on 2D TMDs.

3.
Nanotechnology ; 23(12): 125701, 2012 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-22397807

RESUMEN

We report on the strong temperature-dependent thermal expansion, α(D), in CdS quantum dots (QDs) embedded in a glass template. We have performed a systematic study by using the temperature-dependent first-order Raman spectra, in CdS bulk and in dot samples, in order to assess the size dependence of α(D), and where the role of the compressive strain provoked by the glass host matrix on the dot response is discussed. We report the Grüneisen mode parameters and the anharmonic coupling constants for small CdS dots with mean radius R âˆ¼ 2.0 nm. We found that γ parameters change, with respect to the bulk CdS, in a range between 20 and 50%, while the anharmonicity contribution from two-phonon decay channel becomes the most important process to the temperature-shift properties.

4.
Nano Lett ; 9(9): 3129-36, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19663458

RESUMEN

We have achieved conditions to obtain optical memory effects in semiconductor nanostructures. The system is based on strained InP quantum wires where the tuning of the heavy-light valence band splitting has allowed the existence of two independent optical channels with correlated and uncorrelated excitation and light-emission processes. The presence of an optical channel that preserves the excitation memory is unambiguously corroborated by photoluminescence measurements of free-standing quantum wires under different configurations of the incoming and outgoing light polarizations in various samples. High-resolution transmission electron microscopy and electron diffraction indicate the presence of strain effects in the optical response. By using this effect and under certain growth conditions, we have shown that the optical recombination is mediated by relaxation processes with different natures: one a Markov and another with a non-Markovian signature. Resonance intersubband light-heavy hole transitions assisted by optical phonons provide the desired mechanism for the correlated non-Markovian carrier relaxation process. A multiband calculation for strained InP quantum wires was developed to account for the description of the character of the valence band states and gives quantitative support for light hole-heavy hole transitions assisted by optical phonons.


Asunto(s)
Nanocables/química , Fibras Ópticas , Teoría Cuántica , Semiconductores , Tecnología de Fibra Óptica , Cadenas de Markov , Ensayo de Materiales , Tamaño de la Partícula , Propiedades de Superficie
5.
J Phys Condens Matter ; 29(32): 325503, 2017 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-28613209

RESUMEN

We report the energy spectrum and the eigenstates of conduction and uncoupled valence bands of a quantum well under the influence of a tilted magnetic field. In the framework of the envelope approximation, we implement two analytical approaches to obtain the nontrivial solutions of the tilted magnetic field: (a) the Bubnov-Galerkin spectral method and b) the perturbation theory. We discuss the validity of each method for a broad range of magnetic field intensity and orientation as well as quantum well thickness. By estimating the accuracy of the perturbation method, we provide explicit analytical solutions for quantum wells in a tilted magnetic field configuration that can be employed to study several quantitative phenomena.

6.
Phys Rev E Stat Nonlin Soft Matter Phys ; 64(5 Pt 2): 056237, 2001 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-11736084

RESUMEN

The eigenvalue problem in a cylindrical lens geometry is studied. Using a conformal mapping method, the shape of the boundary and the Hamiltonian for a free particle are reduced to those of a two-dimensional problem with circular symmetry. The wave functions are separated into two independent Hilbert subspaces due to the inherent symmetry of the problem. For small geometry deformations, the solutions are found by a specially designed perturbation approach. Comparisons between exact and perturbative solutions are made for different lens parameters. As the symmetry of the lens is reduced, the characteristics of the spectrum and the corresponding spatial properties of the wave functions are studied. Our results provide a family of billiard geometries in which the electronic level spectrum is well characterized. In analyzing the level spacing distribution of the spectrum, a strong deviation from the Poisson and Wigner limiting distributions is found as the boundary geometry changes. This intermediate distribution is indicative of a mixed phase space, also revealed explicitly in the classical Poincaré maps we present.

7.
Nanoscale Res Lett ; 6(1): 56, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27502678

RESUMEN

A method to determine the effects of the geometry and lateral ordering on the electronic properties of an array of one-dimensional self-assembled quantum dots is discussed. A model that takes into account the valence-band anisotropic effective masses and strain effects must be used to describe the behavior of the photoluminescence emission, proposed as a clean tool for the characterization of dot anisotropy and/or inter-dot coupling. Under special growth conditions, such as substrate temperature and Arsenic background, 1D chains of In0.4Ga0.6 As quantum dots were grown by molecular beam epitaxy. Grazing-incidence X-ray diffraction measurements directly evidence the strong strain anisotropy due to the formation of quantum dot chains, probed by polarization-resolved low-temperature photoluminescence. The results are in fair good agreement with the proposed model.

11.
Phys Rev B Condens Matter ; 39(9): 5907-5912, 1989 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-9949011
13.
Phys Rev B Condens Matter ; 40(2): 1238-1243, 1989 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-9991948
15.
Phys Rev B Condens Matter ; 44(23): 12815-12821, 1991 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-9999459
16.
Phys Rev B Condens Matter ; 41(5): 3028-3038, 1990 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-9994073
20.
Phys Rev B Condens Matter ; 49(19): 13704-13711, 1994 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-10010314
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA