Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Crit Rev Biotechnol ; 43(2): 191-211, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35189751

RESUMEN

Antibiotic pollution is an emerging environmental challenge. Residual antibiotics from various sources, including municipal and industrial wastewater, sewage discharges, and agricultural runoff, are continuously released into freshwater environments, turning them into reservoirs that contribute to the development and spread of antibiotic resistance. Thus, it is essential to understand the impacts of antibiotic residues on aquatic organisms, especially microalgae and cyanobacteria, due to their crucial roles as primary producers in the ecosystem. This review summarizes the effects of antibiotics on major biological processes in freshwater microalgae and cyanobacteria, including photosynthesis, oxidative stress, and the metabolism of macromolecules. Their adaptive mechanisms to antibiotics exposure, such as biodegradation, bioadsorption, and bioaccumulation, are also discussed. Moreover, this review highlights the important factors affecting the antibiotic removal pathways by these organisms, which will promote the use of microalgae-based technology for the removal of antibiotics. Finally, we offer some perspectives on the opportunities for further studies and applications.


Asunto(s)
Cianobacterias , Microalgas , Antibacterianos/farmacología , Microalgas/metabolismo , Ecosistema , Cianobacterias/metabolismo , Agua Dulce , Biodegradación Ambiental
2.
Microb Cell Fact ; 19(1): 97, 2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32345276

RESUMEN

BACKGROUND: For decades, plastic has been a valuable global product due to its convenience and low price. For example, polyethylene terephthalate (PET) was one of the most popular materials for disposable bottles due to its beneficial properties, namely impact resistance, high clarity, and light weight. Increasing demand of plastic resulted in indiscriminate disposal by consumers, causing severe accumulation of plastic wastes. Because of this, scientists have made great efforts to find a way to biologically treat plastic wastes. As a result, a novel plastic degradation enzyme, PETase, which can hydrolyze PET, was discovered in Ideonella sakaiensis 201-F6 in 2016. RESULTS: A green algae, Chlamydomonas reinhardtii, which produces PETase, was developed for this study. Two representative strains (C. reinhardtii CC-124 and CC-503) were examined, and we found that CC-124 could express PETase well. To verify the catalytic activity of PETase produced by C. reinhardtii, cell lysate of the transformant and PET samples were co-incubated at 30 °C for up to 4 weeks. After incubation, terephthalic acid (TPA), i.e. the fully-degraded form of PET, was detected by high performance liquid chromatography analysis. Additionally, morphological changes, such as holes and dents on the surface of PET film, were observed using scanning electron microscopy. CONCLUSIONS: A PET hydrolyzing enzyme, PETase, was successfully expressed in C. reinhardtii, and its catalytic activity was demonstrated. To the best of our knowledge, this is the first case of PETase expression in green algae.


Asunto(s)
Hidrolasas/genética , Microalgas/enzimología , Tereftalatos Polietilenos/metabolismo , Biocatálisis , Hidrolasas/metabolismo , Hidrólisis , Microscopía Electrónica de Rastreo , Tamaño de la Partícula , Tereftalatos Polietilenos/química , Propiedades de Superficie
3.
Plant Physiol ; 177(3): 1050-1065, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29769325

RESUMEN

Algae undergo a complete metabolic transformation under stress by arresting cell growth, inducing autophagy and hyper-accumulating biofuel precursors such as triacylglycerols and starch. However, the regulatory mechanisms behind this stress-induced transformation are still unclear. Here, we use biochemical, mutational, and "omics" approaches to demonstrate that PI3K signaling mediates the homeostasis of energy molecules and influences carbon metabolism in algae. In Chlamydomonas reinhardtii, the inhibition and knockdown (KD) of algal class III PI3K led to significantly decreased cell growth, altered cell morphology, and higher lipid and starch contents. Lipid profiling of wild-type and PI3K KD lines showed significantly reduced membrane lipid breakdown under nitrogen starvation (-N) in the KD. RNA-seq and network analyses showed that under -N conditions, the KD line carried out lipogenesis rather than lipid hydrolysis by initiating de novo fatty acid biosynthesis, which was supported by tricarboxylic acid cycle down-regulation and via acetyl-CoA synthesis from glycolysis. Remarkably, autophagic responses did not have primacy over inositide signaling in algae, unlike in mammals and vascular plants. The mutant displayed a fundamental shift in intracellular energy flux, analogous to that in tumor cells. The high free fatty acid levels and reduced mitochondrial ATP generation led to decreased cell viability. These results indicate that the PI3K signal transduction pathway is the metabolic gatekeeper restraining biofuel yields, thus maintaining fitness and viability under stress in algae. This study demonstrates the existence of homeostasis between starch and lipid synthesis controlled by lipid signaling in algae and expands our understanding of such processes, with biotechnological and evolutionary implications.


Asunto(s)
Carbono/metabolismo , Chlamydomonas reinhardtii/metabolismo , Metabolismo Energético/fisiología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas de Plantas/metabolismo , Adenosina Trifosfato/metabolismo , Autofagia/fisiología , Chlamydomonas reinhardtii/efectos de los fármacos , Chlamydomonas reinhardtii/genética , Inhibidores Enzimáticos/farmacología , Técnicas de Silenciamiento del Gen , Metabolismo de los Lípidos/genética , Lípidos de la Membrana/genética , Lípidos de la Membrana/metabolismo , Mutación , Fosfatidilinositol 3-Quinasas/genética , Inhibidores de las Quinasa Fosfoinosítidos-3 , Filogenia , Proteínas de Plantas/genética , Scenedesmus/efectos de los fármacos , Scenedesmus/metabolismo , Transducción de Señal , Almidón/genética , Almidón/metabolismo
4.
Sci Total Environ ; 934: 173028, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38723963

RESUMEN

Cyanobacteria are oxygen-producing photosynthetic bacteria that convert carbon dioxide into biomass upon exposure to sunlight. However, favorable conditions cause harmful cyanobacterial blooms (HCBs), which are the dense accumulation of biomass at the water surface or subsurface, posing threats to freshwater ecosystems and human health. Understanding the mechanisms underlying cyanobacterial bloom formation is crucial for effective management. In this regard, recent advancements in omics technologies have provided valuable insights into HCBs, which have raised expectations to develop more effective control methods in the near future. This literature review aims to present the genomic architecture, adaptive mechanisms, microbial interactions, and ecological impacts of HCBs through the lens of omics. Genomic analysis indicates that the genome plasticity of cyanobacteria has enabled their resilience and effective adaptation to environmental changes. Transcriptomic investigations have revealed that cyanobacteria use various strategies for adapting to environmental stress. Additionally, metagenomic and metatranscriptomic analyses have emphasized the significant role of the microbial community in regulating HCBs. Finally, we offer perspectives on potential opportunities for further research in this field.


Asunto(s)
Cianobacterias , Cianobacterias/metabolismo , Cianobacterias/genética , Genómica , Floraciones de Algas Nocivas , Transcriptoma , Eutrofización , Ecosistema , Metagenómica
5.
Sci Rep ; 10(1): 10647, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32606320

RESUMEN

Algae-bacteria interaction is one of the main factors underlying the formation of harmful algal blooms (HABs). The aim of this study was to develop a genome-wide high-throughput screening method to identify HAB-influenced specific interactive bacterial metabolites using a comprehensive collection of gene-disrupted E. coli K-12 mutants (Keio collection). The screening revealed that a total of 80 gene knockout mutants in E. coli K-12 resulted in an approximately 1.5-fold increase in algal growth relative to that in wild-type E. coli. Five bacterial genes (lpxL, lpxM, kdsC, kdsD, gmhB) involved in the lipopolysaccharide (LPS) (or lipooligosaccharide, LOS) biosynthesis were identified from the screen. Relatively lower levels of LPS were detected in these bacteria compared to that in the wild-type. Moreover, the concentration-dependent decrease in microalgal growth after synthetic LPS supplementation indicated that LPS inhibits algal growth. LPS supplementation increased the 2,7-dichlorodihydrofluorescein diacetate fluorescence, as well as the levels of lipid peroxidation-mediated malondialdehyde formation, in a concentration-dependent manner, indicating that oxidative stress can result from LPS supplementation. Furthermore, supplementation with LPS also remarkably reduced the growth of diverse bloom-forming dinoflagellates and green algae. Our findings indicate that the Keio collection-based high-throughput in vitro screening is an effective approach for the identification of interactive bacterial metabolites and related genes.


Asunto(s)
Genoma Bacteriano , Floraciones de Algas Nocivas , Lipopolisacáridos/biosíntesis , Chlorella/efectos de los fármacos , Chlorella/metabolismo , Dinoflagelados/efectos de los fármacos , Dinoflagelados/metabolismo , Escherichia coli/genética , Peroxidación de Lípido , Lipopolisacáridos/genética , Lipopolisacáridos/farmacología , Malondialdehído/metabolismo
6.
Cells ; 8(9)2019 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-31466295

RESUMEN

Autophagy is a highly conserved catabolic process in eukaryotic cells by which waste cellular components are recycled to maintain growth in both favorable and stress conditions. Autophagy has been linked to lipid metabolism in microalgae; however, the mechanism underlying this interaction remains unclear. In this study, transgenic Chlamydomonas reinhardtii cells that stably express the red fluorescent protein (mCherry) tagged-ATG8 as an autophagy marker were established. By using this tool, we were able to follow the autophagy process in live microalgal cells under various conditions. Live-cell and transmission electron microscopy (TEM) imaging revealed physical contacts between lipid droplets and autophagic structures during the early stage of nitrogen starvation, while fusion of these two organelles was observed in prolonged nutritional deficiency, suggesting that an autophagy-related pathway might be involved in lipid droplet turnover in this alga. Our results thus shed light on the interplay between autophagy and lipid metabolism in C. reinhardtii, and this autophagy marker would be a valuable asset for further investigations on autophagic processes in microalgae.


Asunto(s)
Autofagosomas/metabolismo , Familia de las Proteínas 8 Relacionadas con la Autofagia/genética , Chlamydomonas reinhardtii/genética , Gotas Lipídicas/metabolismo , Autofagosomas/ultraestructura , Autofagia , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/ultraestructura , Cloroquina/efectos adversos , Gotas Lipídicas/ultraestructura , Metabolismo de los Lípidos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Electrónica de Transmisión , Nitrógeno/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/ultraestructura , Proteína Fluorescente Roja
7.
Sci Rep ; 9(1): 9856, 2019 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-31285472

RESUMEN

Autophagy is a self-degradation system wherein cellular materials are recycled. Although autophagy has been extensively studied in yeast and mammalian systems, integrated stress responses in microalgae remain poorly understood. Accordingly, we carried out a comparative study on the oxidative stress responses of Chlamydomonas reinhardtii wild-type and a starchless (sta6) mutant previously shown to accumulate high lipid content under adverse conditions. To our surprise, the sta6 mutant exhibited significantly higher levels of lipid peroxidation in the same growth conditions compared to controls. The sta6 mutant was more sensitive to oxidative stress induced by H2O2, whereas the wild-type was relatively more resistant. In addition, significantly up-regulated autophagy-related factors including ATG1, ATG101, and ATG8 were maintained in the sta6 mutant regardless of nitrogen availability. Also, the sta6 mutant exhibited relatively higher ATG8 protein level compared to wild-type under non-stress condition, and quickly reached a saturation point of autophagy when H2O2 was applied. Our results indicate that, in addition to the impact of carbon allocation, the increased lipid phenotype of the sta6 mutant may result from alterations in the cellular oxidative state, which in turn activates autophagy to clean up oxidatively damaged components and fuel lipid production.


Asunto(s)
Autofagia/fisiología , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/fisiología , Estrés Oxidativo/fisiología , Almidón/biosíntesis , Metabolismo de los Hidratos de Carbono/fisiología , Carbono/metabolismo , Peroxidación de Lípido/fisiología , Lípidos/fisiología , Nitrógeno/metabolismo , Oxidación-Reducción , Fenotipo , Regulación hacia Arriba/fisiología
8.
Bioresour Technol ; 292: 121937, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31408779

RESUMEN

This work aimed to demonstrate a new strategy for enhancing the production of carotenoids through the regulation of seesaw cross-talk between autophagy and carotenoid biosynthesis pathways in Chlamydomonas reinhardtii. Autophagy-related ATG1 and ATG8 genes were first silenced using artificial microRNA, which in turn reduced the mRNA expression of ATG1 and ATG8 by 84.4% and 74.3%, respectively. While ATG1 kinase controls early step in autophagy induction and ATG8 is an essential factor for the downstream formation of autophagosome membranes, the decreased expression of these genes led to a 2.34-fold increase in the amount of ß-carotene content (i.e., 23.75 mg/g DCW). Furthermore, all mutants seemed to exhibit greater biodiesel properties than that of wild-type due to increased accumulation of saturated and monounsaturated fatty acids. These results support the role of autophagy in regulating the production of valuable metabolites, which could contribute to uplifting the economic outlook of nascent algal biorefinery.


Asunto(s)
Autofagia , Chlamydomonas reinhardtii , Carotenoides , beta Caroteno
9.
J Appl Phycol ; 30(4): 2297-2304, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30147236

RESUMEN

Microalgae have been widely considered for the production of valuable products, such as lipid-based biofuel, value-added pigments, and anti-photo aging reagents. More recently, microalgae have been considered an alternative host for recombinant protein production because of their economic benefits and ecofriendly characteristics. Additionally, many microalgal strains identified to date are generally recognized as safe (GRAS); therefore, the use of microalgae-based technology is promising. However, basic studies on the genetic engineering of microalgae are rare, despite their importance. Particularly, inducible promoter systems that can be applied for strain engineering or recombinant protein production are rarely studied; hence, a number of challenging issues remain unsolved. Therefore, in this study, we focused on the development of a convenient and compact-inducible promoter system that can be used in microalgae. Based on previous success with plant systems, we employed the alcohol-inducible AlcR-P alcA system, which originates from the filamentous fungus, Aspergillus nidulans. This system comprises only two components, a regulatory protein, AlcR, and an inducible promoter, P alcA. Therefore, construction and transformation of the gene cassettes can be easily performed. Ethanol-dependent gene expression was observed in the transformants with no significant growth retardation or inducer consumption observed in the cells cultivated under optimized conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA