Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Brain ; 147(7): 2566-2578, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38289855

RESUMEN

Compartmentalized meningeal inflammation is thought to represent one of the key players in the pathogenesis of cortical demyelination in multiple sclerosis. PET targeting the 18 kDa mitochondrial translocator protein (TSPO) is a molecular-specific approach to quantifying immune cell-mediated density in the cortico-meningeal tissue compartment in vivo. This study aimed to characterize cortical and meningeal TSPO expression in a heterogeneous cohort of multiple sclerosis cases using in vivo simultaneous MR-PET with 11C-PBR28, a second-generation TSPO radioligand, and ex vivo immunohistochemistry. Forty-nine multiple sclerosis patients (21 with secondary progressive and 28 with relapsing-remitting multiple sclerosis) with mixed or high affinity binding for 11C-PBR28 underwent 90-min 11C-PBR28 simultaneous MR-PET. Tracer binding was measured using 60-90 min normalized standardized uptake value ratios sampled at mid-cortical depth and ∼3 mm above the pial surface. Data in multiple sclerosis patients were compared to 21 age-matched healthy controls. To characterize the nature of 11C-PBR28 PET uptake, the meningeal and cortical lesion cellular expression of TSPO was further described in post-mortem brain tissue from 20 cases with secondary progressive multiple sclerosis and five age-matched healthy donors. Relative to healthy controls, patients with multiple sclerosis exhibited abnormally increased TSPO signal in the cortex and meningeal tissue, diffusively in progressive disease and more localized in relapsing-remitting multiple sclerosis. In multiple sclerosis, increased meningeal TSPO levels were associated with increased Expanded Disability Status Scale scores (P = 0.007, by linear regression). Immunohistochemistry, validated using in situ sequencing analysis, revealed increased TSPO expression in the meninges and adjacent subpial cortical lesions of post-mortem secondary progressive multiple sclerosis cases relative to control tissue. In these cases, increased TSPO expression was related to meningeal inflammation. Translocator protein immunostaining was detected on meningeal MHC-class II+ macrophages and cortical-activated MHC-class II+ TMEM119+ microglia. In vivo arterial blood data and neuropathology showed that endothelial binding did not significantly account for increased TSPO cortico-meningeal expression in multiple sclerosis. Our findings support the use of TSPO-PET in multiple sclerosis for imaging in vivo inflammation in the cortico-meningeal brain tissue compartment and provide in vivo evidence implicating meningeal inflammation in the pathogenesis of the disease.


Asunto(s)
Meninges , Esclerosis Múltiple , Tomografía de Emisión de Positrones , Receptores de GABA , Humanos , Receptores de GABA/metabolismo , Receptores de GABA/genética , Femenino , Masculino , Persona de Mediana Edad , Adulto , Tomografía de Emisión de Positrones/métodos , Meninges/metabolismo , Meninges/diagnóstico por imagen , Meninges/patología , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Anciano , Corteza Cerebral/metabolismo , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Esclerosis Múltiple Recurrente-Remitente/metabolismo , Esclerosis Múltiple Recurrente-Remitente/diagnóstico por imagen , Esclerosis Múltiple Recurrente-Remitente/patología , Imagen por Resonancia Magnética , Esclerosis Múltiple Crónica Progresiva/metabolismo , Esclerosis Múltiple Crónica Progresiva/diagnóstico por imagen , Esclerosis Múltiple Crónica Progresiva/patología , Acetamidas , Piridinas
2.
Mult Scler ; 30(2): 166-176, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38279672

RESUMEN

BACKGROUND: Paramagnetic rim white matter (WM) lesions (PRL) are thought to be a main driver of non-relapsing multiple sclerosis (MS) progression. It is unknown whether cerebrospinal fluid (CSF)-soluble factors diffusing from the ventricles contribute to PRL formation. OBJECTIVE: To investigate the distribution of PRL and non-rim brain WM lesions as a function of distance from ventricular CSF, their relationship with cortical lesions, the contribution of lesion phenotype, and localization to neurological disability. METHODS: Lesion count and volume of PRL, non-rim WM, leukocortical lesion (LCL), and subpial/intracortical lesions were obtained at 7-T. The brain WM was divided into 1-mm-thick concentric rings radiating from the ventricles to extract PRL and non-rim WM lesion volume from each ring. RESULTS: In total, 61 MS patients with ⩾1 PRL were included in the study. Both PRL and non-rim WM lesion volumes were the highest in the periventricular WM and declined with increasing distance from ventricles. A CSF distance-independent association was found between non-rim WM lesions, PRL, and LCL, but not subpial/intracortical lesions. Periventricular non-rim WM lesion volume was the strongest predictor of neurological disability. CONCLUSIONS: Non-rim and PRL share a gradient of distribution from the ventricles toward the cortex, suggesting that CSF proximity equally impacts the prevalence of both lesion phenotypes.


Asunto(s)
Esclerosis Múltiple , Sustancia Blanca , Humanos , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Ventrículos Cerebrales/diagnóstico por imagen , Ventrículos Cerebrales/patología
3.
Curr Opin Neurol ; 36(3): 222-228, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37078649

RESUMEN

PURPOSE OF REVIEW: Cortical lesions are an established pathological feature of multiple sclerosis, develop from the earliest disease stages and contribute to disease progression. Here, we discuss current imaging approaches for detecting cortical lesions in vivo and their contribution for improving our understanding of cortical lesion pathogenesis as well as their clinical significance. RECENT FINDINGS: Although a variable portion of cortical lesions goes undetected at clinical field strength and even at ultra-high field MRI, their evaluation is still clinically relevant. Cortical lesions are important for differential multiple sclerosis (MS) diagnosis, have relevant prognostic value and independently predict disease progression. Some studies also show that cortical lesion assessment could be used as a therapeutic outcome target in clinical trials. Advances in ultra-high field MRI not only allow increased cortical lesion detection in vivo but also the disclosing of some interesting features of cortical lesions related to their pattern of development and evolution as well to the nature of associated pathological changes, which might prove relevant for better understanding the pathogenesis of these lesions. SUMMARY: Despite some limitations, imaging of cortical lesions is of paramount importance in MS for elucidating disease mechanisms as well as for improving patient management in clinic.


Asunto(s)
Esclerosis Múltiple , Humanos , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Imagen por Resonancia Magnética/métodos , Progresión de la Enfermedad , Pronóstico
4.
Mult Scler ; 27(5): 674-683, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32584159

RESUMEN

BACKGROUND: Thalamic pathology is a marker for neurodegeneration and multiple sclerosis (MS) disease progression. OBJECTIVE: To characterize (1) the morphology of thalamic lesions, (2) their relation to cortical and white matter (WM) lesions, and (3) clinical measures, and to assess (4) the imaging correlates of thalamic atrophy. METHODS: A total of 90 MS patients and 44 healthy controls underwent acquisition of 7 Tesla images for lesion segmentation and 3 Tesla scans for atrophy evaluation. Thalamic lesions were classified according to the shape and the presence of a central venule. Regression analysis identified the predictors of (1) thalamic atrophy, (2) neurological disability, and (3) information processing speed. RESULTS: Thalamic lesions were mostly ovoid than periventricular, and for the great majority (78%) displayed a central venule. Lesion volume in the thalamus, cortex, and WM did not correlate with each other. Thalamic atrophy was only associated with WM lesion volume (p = 0.002); subpial and WM lesion volumes were associated with neurological disability (p = 0.016; p < 0.001); and WM and thalamic lesion volumes were related with cognitive impairment (p < 0.001; p = 0.03). CONCLUSION: Thalamic lesions are unrelated to those in the cortex and WM, suggesting that they may not share common pathogenic mechanisms and do not contribute to thalamic atrophy. Combined WM, subpial, and thalamic lesion volumes at 7 Tesla contribute to the disease severity.


Asunto(s)
Disfunción Cognitiva , Esclerosis Múltiple , Atrofia/patología , Disfunción Cognitiva/patología , Humanos , Imagen por Resonancia Magnética , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Tálamo/diagnóstico por imagen , Tálamo/patología
5.
Brain ; 143(10): 2973-2987, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32935834

RESUMEN

We used 7 T MRI to: (i) characterize the grey and white matter pathology in the cervical spinal cord of patients with early relapsing-remitting and secondary progressive multiple sclerosis; (ii) assess the spinal cord lesion spatial distribution and the hypothesis of an outside-in pathological process possibly driven by CSF-mediated immune cytotoxic factors; and (iii) evaluate the association of spinal cord pathology with brain burden and its contribution to neurological disability. We prospectively recruited 20 relapsing-remitting, 15 secondary progressive multiple sclerosis participants and 11 age-matched healthy control subjects to undergo 7 T imaging of the cervical spinal cord and brain as well as conventional 3 T brain acquisition. Cervical spinal cord imaging at 7 T was used to segment grey and white matter, including lesions therein. Brain imaging at 7 T was used to segment cortical and white matter lesions and 3 T imaging for cortical thickness estimation. Cervical spinal cord lesions were mapped voxel-wise as a function of distance from the inner central canal CSF pool to the outer subpial surface. Similarly, brain white matter lesions were mapped voxel-wise as a function of distance from the ventricular system. Subjects with relapsing-remitting multiple sclerosis showed a greater predominance of spinal cord lesions nearer the outer subpial surface compared to secondary progressive cases. Inversely, secondary progressive participants presented with more centrally located lesions. Within the brain, there was a strong gradient of lesion formation nearest the ventricular system that was most evident in participants with secondary progressive multiple sclerosis. Lesion fractions within the spinal cord grey and white matter were related to the lesion fraction in cerebral white matter. Cortical thinning was the primary determinant of the Expanded Disability Status Scale, white matter lesion fractions in the spinal cord and brain of the 9-Hole Peg Test and cortical thickness and spinal cord grey matter cross-sectional area of the Timed 25-Foot Walk. Spinal cord lesions were localized nearest the subpial surfaces for those with relapsing-remitting and the central canal CSF surface in progressive disease, possibly implying CSF-mediated pathogenic mechanisms in lesion development that may differ between multiple sclerosis subtypes. These findings show that spinal cord lesions involve both grey and white matter from the early multiple sclerosis stages and occur mostly independent from brain pathology. Despite the prevalence of cervical spinal cord lesions and atrophy, brain pathology seems more strongly related to physical disability as measured by the Expanded Disability Status Scale.


Asunto(s)
Médula Cervical/diagnóstico por imagen , Imagen por Resonancia Magnética/tendencias , Esclerosis Múltiple Crónica Progresiva/diagnóstico por imagen , Esclerosis Múltiple Recurrente-Remitente/diagnóstico por imagen , Adulto , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Esclerosis Múltiple Crónica Progresiva/epidemiología , Esclerosis Múltiple Recurrente-Remitente/epidemiología
6.
Curr Opin Neurol ; 33(4): 422-429, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32657883

RESUMEN

PURPOSE OF REVIEW: Ultra-high field 7 T MRI has multiple applications for the in vivo characterization of the heterogeneous aspects underlying multiple sclerosis including the identification of cortical lesions, characterization of the different types of white matter plaques, evaluation of structures difficult to assess with conventional MRI (thalamus, cerebellum, spinal cord, meninges). RECENT FINDINGS: The sensitivity of cortical lesion detection at 7 T is twice than at lower field MRI, especially for subpial lesions, the most common cortical lesion type in multiple sclerosis. Cortical lesion load accrual is independent of that in the white matter and predicts disability progression.Seven Tesla MRI provides details on tissue microstructure that can be used to improve white matter lesion characterization. These include the presence of a central vein, whose identification can be used to improve multiple sclerosis diagnosis, or the appearance of an iron-rich paramagnetic rim on susceptibility-weighted images, which corresponds to iron-rich microglia at the periphery of slow expanding lesions. Improvements in cerebellar and spinal cord tissue delineation and lesion characterization have also been demonstrated. SUMMARY: Imaging at 7 T allows assessing more comprehensively the complementary pathophysiological aspects of multiple sclerosis, opening up novel perspectives for clinical and therapeutics evaluation.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Esclerosis Múltiple/diagnóstico por imagen , Médula Espinal/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Progresión de la Enfermedad , Humanos , Esclerosis Múltiple/patología , Médula Espinal/patología , Sustancia Blanca/patología
8.
Radiology ; 291(3): 740-749, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30964421

RESUMEN

Background Cortical lesions develop early in multiple sclerosis (MS) and play a major role in disease progression. MRI at 7.0 T shows high sensitivity for detection of cortical lesions as well as better spatial resolution and signal-to-noise ratio compared with lower field strengths. Purpose To longitudinally characterize (a) the development and evolution of cortical lesions in multiple sclerosis across the cortical width, sulci, and gyri; (b) their relation with white matter lesion accrual; and (c) the contribution of 7.0-T cortical and white matter lesion load and cortical thickness to neurologic disability. Materials and Methods Twenty participants with relapsing-remitting MS and 13 with secondary progressive MS, along with 10 age-matched healthy controls, were prospectively recruited from 2010 to 2016 to acquire, in two imaging sessions (mean interval, 1.5 years), 7.0-T MRI T2*-weighted gradient-echo images (0.33 × 0.33 × 1.0 mm3) for cortical and white matter lesion segmentation and 3.0-T T1-weighted images for cortical surface reconstruction and cortical thickness estimation. Cortical lesions were sampled through the cortex to quantify cortical lesion distribution. The Expanded Disability Status Scale (EDSS) was used to assess neurologic disability. Nonparametric statistics assessed differences between and within groups in MRI metrics of cortical and white matter lesion burden; regression analysis explored associations of disability with MRI metrics. Results Twenty-five of 31 (81%) participants developed new cortical lesions per year (intracortical, 1.3 ± 1.7 vs leukocortical, 0.7 ± 1.9; P = .04), surpassing white matter lesion accrual (cortical, 2.0 ± 2.8 vs white matter, 0.7 ± 0.6; P = .01). In contrast to white matter lesions, cortical lesion accrual was greater in participants with secondary progressive MS than with relapsing-remitting MS (3.6 lesions/year ± 4.2 vs 1.1 lesions/year ± 0.9, respectively; P = .03) and preferentially localized in sulci. Total cortical lesion volume independently predicted baseline EDSS (ß = 1.5, P < .001) and EDSS changes at follow-up (ß = 0.5, P = .003). Conclusion Cortical lesions predominantly develop intracortically and within sulci, suggesting an inflammatory cerebrospinal fluid-mediated lesion pathogenesis. Cortical lesion accumulation was prominent at 7.0 T and independently predicted neurologic disability progression. © RSNA, 2019 Online supplemental material is available for this article. See also the editorial by Filippi and Rocca in this issue.


Asunto(s)
Corteza Cerebral , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Esclerosis Múltiple , Adulto , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Estudios Prospectivos , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología
9.
Hum Brain Mapp ; 39(5): 2133-2146, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29411457

RESUMEN

The aim of this study was to investigate the interplay between structural connectivity and cortical demyelination in early multiple sclerosis. About 27 multiple sclerosis patients and 18 age-matched controls underwent two MRI scanning sessions. The first was done at 7T and involved acquiring quantitative T1 and T2 * high-resolution maps to estimate cortical myelination. The second was done on a Connectom scanner and consisted of acquiring high angular resolution diffusion-weighted images to compute white matter structural connectivity metrics: strength, clustering and local efficiency. To further investigate the interplay between structural connectivity and cortical demyelination, patients were divided into four groups according to disease-duration: 0-1 year, 1-2 years, 2-3 years, and >3 years. ANOVA and Spearman's correlations were used to highlight relations between metrics. ANOVA detected a significant effect between disease duration and both cortical myelin (p = 2 × 10-8 ) and connectivity metrics (p < 10-4 ). We observed significant cortical myelin loss in the shorter disease-duration cohorts (0-1 year, p = .0015), and an increase in connectivity in the longer disease-duration cohort (2-3 years, strength: p = .01, local efficiency: p = .002, clustering: p = .001). Moreover, significant covariations between myelin estimation and white matter connectivity metrics were observed: Spearman's Rho correlation coefficients of 0.52 (p = .0003), 0.55 (p = .0001), and 0.53 (p = .0001) for strength, local efficiency, and clustering, respectively. An association between cortical myelin loss and changes in white matter connectivity in early multiple sclerosis was detected. These changes in network organization might be the result of compensatory mechanisms in response to the ongoing cortical diffuse damage in the early stages of multiple sclerosis.


Asunto(s)
Corteza Cerebral/patología , Enfermedades Desmielinizantes/patología , Esclerosis Múltiple/patología , Red Nerviosa/patología , Adulto , Análisis de Varianza , Estudios de Casos y Controles , Corteza Cerebral/diagnóstico por imagen , Conectoma , Enfermedades Desmielinizantes/complicaciones , Enfermedades Desmielinizantes/diagnóstico por imagen , Evaluación de la Discapacidad , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/complicaciones , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/fisiopatología , Red Nerviosa/diagnóstico por imagen
10.
Mult Scler ; 24(11): 1433-1444, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-28803512

RESUMEN

BACKGROUND: Thalamic degeneration impacts multiple sclerosis (MS) prognosis. OBJECTIVE: To investigate heterogeneous thalamic pathology, its correlation with white matter (WM), cortical lesions and thickness, and as function of distance from cerebrospinal fluid (CSF). METHODS: In 41 MS subjects and 17 controls, using 3 and 7 T imaging, we tested for (1) differences in thalamic volume and quantitative T2* (q-T2*) (2) globally and (3) within concentric bands originating from the CSF/thalamus interface; (4) the relation between thalamic, cortical, and WM metrics; and (5) the contribution of magnetic resonance imaging (MRI) metrics to clinical scores. We also assessed MS thalamic lesion distribution as a function of distance from CSF. RESULTS: Thalamic lesions were mainly located next to the ventricles. Thalamic volume was decreased in MS versus controls ( p < 10-2); global q-T2* was longer in secondary progressive multiple sclerosis (SPMS) only ( p < 10-2), indicating myelin and/or iron loss. Thalamic atrophy and longer q-T2* correlated with WM lesion volume ( p < 0.01). In relapsing-remitting MS, q-T2* thalamic abnormalities were located next to the WM ( p < 0.01 (uncorrected), p = 0.09 (corrected)), while they were homogeneously distributed in SPMS. Cortical MRI metrics were the strongest predictors of clinical outcome. CONCLUSION: Heterogeneous pathological processes affect the thalamus in MS. While focal lesions are likely mainly driven by CSF-mediated factors, overall thalamic degeneration develops in association with WM lesions.


Asunto(s)
Esclerosis Múltiple/patología , Degeneración Nerviosa/patología , Tálamo/patología , Adulto , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/diagnóstico por imagen , Degeneración Nerviosa/diagnóstico por imagen , Tálamo/diagnóstico por imagen
11.
Ann Neurol ; 80(5): 776-790, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27686563

RESUMEN

OBJECTIVE: In multiple sclerosis (MS), using simultaneous magnetic resonance-positron emission tomography (MR-PET) imaging with 11 C-PBR28, we quantified expression of the 18kDa translocator protein (TSPO), a marker of activated microglia/macrophages, in cortex, cortical lesions, deep gray matter (GM), white matter (WM) lesions, and normal-appearing WM (NAWM) to investigate the in vivo pathological and clinical relevance of neuroinflammation. METHODS: Fifteen secondary-progressive MS (SPMS) patients, 12 relapsing-remitting MS (RRMS) patients, and 14 matched healthy controls underwent 11 C-PBR28 MR-PET. MS subjects underwent 7T T2*-weighted imaging for cortical lesion segmentation, and neurological and cognitive evaluation. 11 C-PBR28 binding was measured using normalized 60- to 90-minute standardized uptake values and volume of distribution ratios. RESULTS: Relative to controls, MS subjects exhibited abnormally high 11 C-PBR28 binding across the brain, the greatest increases being in cortex and cortical lesions, thalamus, hippocampus, and NAWM. MS WM lesions showed relatively modest TSPO increases. With the exception of cortical lesions, where TSPO expression was similar, 11 C-PBR28 uptake across the brain was greater in SPMS than in RRMS. In MS, increased 11 C-PBR28 binding in cortex, deep GM, and NAWM correlated with neurological disability and impaired cognitive performance; cortical thinning correlated with increased thalamic TSPO levels. INTERPRETATION: In MS, neuroinflammation is present in the cortex, cortical lesions, deep GM, and NAWM, is closely linked to poor clinical outcome, and is at least partly linked to neurodegeneration. Distinct inflammatory-mediated factors may underlie accumulation of cortical and WM lesions. Quantification of TSPO levels in MS could prove to be a sensitive tool for evaluating in vivo the inflammatory component of GM pathology, particularly in cortical lesions. Ann Neurol 2016;80:776-790.


Asunto(s)
Sustancia Gris/diagnóstico por imagen , Inflamación/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Esclerosis Múltiple Crónica Progresiva/diagnóstico por imagen , Esclerosis Múltiple Recurrente-Remitente/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Pirimidinas , Receptores de GABA/metabolismo , Sustancia Blanca/diagnóstico por imagen , Adulto , Femenino , Sustancia Gris/metabolismo , Humanos , Inflamación/metabolismo , Masculino , Persona de Mediana Edad , Imagen Multimodal , Esclerosis Múltiple Crónica Progresiva/metabolismo , Esclerosis Múltiple Recurrente-Remitente/metabolismo , Sustancia Blanca/metabolismo
13.
Elife ; 132024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38192199

RESUMEN

Axonal degeneration is a central pathological feature of multiple sclerosis and is closely associated with irreversible clinical disability. Current noninvasive methods to detect axonal damage in vivo are limited in their specificity and clinical applicability, and by the lack of proper validation. We aimed to validate an MRI framework based on multicompartment modeling of the diffusion signal (AxCaliber) in rats in the presence of axonal pathology, achieved through injection of a neurotoxin damaging the neuronal terminal of axons. We then applied the same MRI protocol to map axonal integrity in the brain of multiple sclerosis relapsing-remitting patients and age-matched healthy controls. AxCaliber is sensitive to acute axonal damage in rats, as demonstrated by a significant increase in the mean axonal caliber along the targeted tract, which correlated with neurofilament staining. Electron microscopy confirmed that increased mean axonal diameter is associated with acute axonal pathology. In humans with multiple sclerosis, we uncovered a diffuse increase in mean axonal caliber in most areas of the normal-appearing white matter, preferentially affecting patients with short disease duration. Our results demonstrate that MRI-based axonal diameter mapping is a sensitive and specific imaging biomarker that links noninvasive imaging contrasts with the underlying biological substrate, uncovering generalized axonal damage in multiple sclerosis as an early event.


Asunto(s)
Esclerosis Múltiple , Humanos , Animales , Ratas , Esclerosis Múltiple/diagnóstico por imagen , Axones , Imagen por Resonancia Magnética , Encéfalo , Difusión
14.
J Neuroimaging ; 32(3): 471-479, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35165979

RESUMEN

BACKGROUND AND PURPOSE: Corpus callosum (CC) atrophy is a strong predictor of multiple sclerosis (MS) disability but the contributing pathological mechanisms remain uncertain. We aimed to apply advanced MRI to explore what drives the often nonuniform callosal atrophy. METHODS: Prospective brain 7 Tesla and 3 Tesla Human Connectom Scanner MRI were performed in 92 MS patients. White matter, leukocortical, and intracortical lesions were manually segmented. FreeSurfer was used to segment the CC and topographically classify lesions per lobe or as deep white matter lesions. Regression models were calculated to predict focal CC atrophy. RESULTS: The frontal and parietal lobes contained the majority (≥80%) of all lesion classifications in both relapsing-remitting and secondary progressive MS subtypes. The anterior subsection of the CC had the smallest proportional volume difference between subtypes (11%). Deep, temporal, and occipital white matter lesions, and occipital intracortical lesions were the strongest predictors of middle-posterior callosal atrophy (adjusted R2  = .54-.39, P < .01). CONCLUSIONS: Both white matter and cortical lesions contribute to regional corpus callosal atrophy. The lobe-specific lesion topology does not fully explain the inhomogeneous CC atrophy.


Asunto(s)
Leucoencefalopatías , Esclerosis Múltiple Recurrente-Remitente , Esclerosis Múltiple , Sustancia Blanca , Atrofia/patología , Cuerpo Calloso/diagnóstico por imagen , Cuerpo Calloso/patología , Humanos , Leucoencefalopatías/patología , Imagen por Resonancia Magnética/métodos , Esclerosis Múltiple/patología , Esclerosis Múltiple Recurrente-Remitente/patología , Estudios Prospectivos , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología
15.
Front Neurol ; 12: 714820, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34539559

RESUMEN

Cortical demyelination occurs early in multiple sclerosis (MS) and relates to disease outcome. The brain cortex has endogenous propensity for remyelination as proven from histopathology study. In this study, we aimed at characterizing cortical microstructural abnormalities related to myelin content by applying a novel quantitative MRI technique in early MS. A combined myelin estimation (CME) cortical map was obtained from quantitative 7-Tesla (7T) T 2 * and T1 acquisitions in 25 patients with early MS and 19 healthy volunteers. Cortical lesions in MS patients were classified based on their myelin content by comparison with CME values in healthy controls as demyelinated, partially demyelinated, or non-demyelinated. At follow-up, we registered changes in cortical lesions as increased, decreased, or stable CME. Vertex-wise analysis compared cortical CME in the normal-appearing cortex in 25 MS patients vs. 19 healthy controls at baseline and investigated longitudinal changes at 1 year in 10 MS patients. Measurements from the neurite orientation dispersion and density imaging (NODDI) diffusion model were obtained to account for cortical neurite/dendrite loss at baseline and follow-up. Finally, CME maps were correlated with clinical metrics. CME was overall low in cortical lesions (p = 0.03) and several normal-appearing cortical areas (p < 0.05) in the absence of NODDI abnormalities. Individual cortical lesion analysis revealed, however, heterogeneous CME patterns from extensive to partial or absent demyelination. At follow-up, CME overall decreased in cortical lesions and non-lesioned cortex, with few areas showing an increase (p < 0.05). Cortical CME maps correlated with processing speed in several areas across the cortex. In conclusion, CME allows detection of cortical microstructural changes related to coexisting demyelination and remyelination since the early phases of MS, and shows to be more sensitive than NODDI and relates to cognitive performance.

16.
Brain Commun ; 3(3): fcab134, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34704024

RESUMEN

In multiple sclerosis, individual lesion-type patterns on magnetic resonance imaging might be valuable for predicting clinical outcome and monitoring treatment effects. Neuropathological and imaging studies consistently show that cortical lesions contribute to disease progression. The presence of chronic active white matter lesions harbouring a paramagnetic rim on susceptibility-weighted magnetic resonance imaging has also been associated with an aggressive form of multiple sclerosis. It is, however, still uncertain how these two types of lesions relate to each other, or which one plays a greater role in disability progression. In this prospective, longitudinal study in 100 multiple sclerosis patients (74 relapsing-remitting, 26 secondary progressive), we used ultra-high field 7-T susceptibility imaging to characterize cortical and rim lesion presence and evolution. Clinical evaluations were obtained over a mean period of 3.2 years in 71 patients, 46 of which had a follow-up magnetic resonance imaging. At baseline, cortical and rim lesions were identified in 96% and 63% of patients, respectively. Rim lesion prevalence was similar across disease stages. Patients with rim lesions had higher cortical and overall white matter lesion load than subjects without rim lesions (P = 0.018-0.05). Altogether, cortical lesions increased by both count and volume (P = 0.004) over time, while rim lesions expanded their volume (P = 0.023) whilst lacking new rim lesions; rimless white matter lesions increased their count but decreased their volume (P = 0.016). We used a modern machine learning algorithm based on extreme gradient boosting techniques to assess the cumulative power as well as the individual importance of cortical and rim lesion types in predicting disease stage and disability progression, alongside with more traditional imaging markers. The most influential imaging features that discriminated between multiple sclerosis stages (area under the curve±standard deviation = 0.82 ± 0.08) included, as expected, the normalized white matter and thalamic volume, white matter lesion volume, but also leukocortical lesion volume. Subarachnoid cerebrospinal fluid and leukocortical lesion volumes, along with rim lesion volume were the most important predictors of Expanded Disability Status Scale progression (area under the curve±standard deviation = 0.69 ± 0.12). Taken together, these results indicate that while cortical lesions are extremely frequent in multiple sclerosis, rim lesion development occurs only in a subset of patients. Both, however, persist over time and relate to disease progression. Their combined assessment is needed to improve the ability of identifying multiple sclerosis patients at risk of progressing disease.

17.
J Neurol ; 268(7): 2473-2481, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33523256

RESUMEN

OBJECTIVE: This study aimed to investigate at 7.0-T MRI a) the role of multiple sclerosis (MS) cortical lesions in cortical tissue loss b) their relation to neurological disability. METHODS: In 76 relapsing remitting and 26 secondary progressive MS patients (N = 102) and 56 healthy subjects 7.0-T T2*-weighted images were acquired for lesion segmentation; 3.0-T T1-weighted structural scans for cortical surface reconstruction/cortical thickness estimation. Patients were dichotomized based on the median cortical lesion volume in low and high cortical lesion load groups that differed by age, MS phenotype and degree of neurological disability. Group differences in cortical thickness were tested on reconstructed cortical surface. Patients were evaluated clinically by means of the Expanded Disability Status Scale (EDSS). RESULTS: Cortical lesions were detected in 96% of patients. White matter lesion load was greater in the high than in the low cortical lesion load MS group (p = 0.01). Both MS groups disclosed clusters (prevalently parietal) of cortical thinning relative to healthy subjects, though these regions did not show the highest cortical lesion density, which predominantly involved frontal regions. Cortical thickness decreased on average by 0.37 mm, (p = 0.002) in MS patients for each unit standard deviation change in white matter lesion volume. The odds of having a higher EDSS were associated with cortical lesion volume (1.78, p = 0.01) and disease duration (1.15, p < 0.001). CONCLUSION: Cortical thinning in MS is not directly related to cortical lesion load but rather with white matter lesion volume. Neurological disability in MS is better explained by cortical lesion volume assessment.


Asunto(s)
Esclerosis Múltiple Crónica Progresiva , Esclerosis Múltiple Recurrente-Remitente , Esclerosis Múltiple , Sustancia Blanca , Adelgazamiento de la Corteza Cerebral , Humanos , Imagen por Resonancia Magnética , Esclerosis Múltiple/complicaciones , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple Recurrente-Remitente/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen
18.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 204-207, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31945878

RESUMEN

Traditional techniques based on diffusion MR imaging suffer from extremely low specificity in separating disease-related alterations in white matter microstructure, which can involve multiple phenomena including axonal loss, demyelination and changes in axonal size. Multi-shell diffusion MRI is able to greatly increase specificity by concomitantly exploring multiple diffusion timescales. If multi-shell acquisition is combined with an exploration of different diffusion times, diffusion data allows the estimation of sophisticated compartmental models, which provide greatly enhanced specificity to the presence of different tissue sub-compartments, as well as estimates of intra-voxel axonal diameter distributions. In this paper, we apply a multiple-b-value, high angular resolution multi-shell diffusion MRI protocol with varying diffusion times to a cohort of multiple sclerosis (MS) patients and compare them to a population of healthy controls. By fitting the AxCaliber model, we are able to extract indices for axonal diameter across the whole brain. We show that MS is associated with widespread increases of axonal diameter and that our axonal diameter estimation provides the highest discrimination power for local alterations in normal-appearing white matter in MS compared to controls. AxCaliber has the potential to disentangle microstructural alterations in MS and holds great promises to become a sensitive and specific non-invasive biomarker of irreversible disease progression.


Asunto(s)
Esclerosis Múltiple , Axones , Encéfalo , Mapeo Encefálico , Imagen de Difusión por Resonancia Magnética , Humanos
19.
Neuroimage Clin ; 22: 101699, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30739842

RESUMEN

Irreversible white matter (WM) damage, including severe demyelination and axonal loss, is a main determinant of long-term disability in multiple sclerosis (MS). Non-invasive detection of changes in microstructural WM integrity in the disease is challenging since commonly used imaging metrics lack the necessary sensitivity, especially in the early phase of the disease. This study aims at assessing microstructural WM abnormalities in early-stage MS by using ultra-high gradient strength multi-shell diffusion MRI and the restricted signal fraction (FR) from the Composite Hindered and Restricted Model of Diffusion (CHARMED), a metric sensitive to the volume fraction of axons. In 22 early MS subjects (disease duration ≤5 years) and 15 age-matched healthy controls, restricted fraction estimates were obtained through the CHARMED model along with conventional Diffusion Tensor Imaging (DTI) metrics. All imaging parameters were compared cross-sectionally between the MS subjects and controls both in WM lesions and normal-appearing white matter (NAWM). We found a significant reduction in FR focally in WM lesions and widespread in the NAWM in MS patients relative to controls (corrected p < .05). Signal fraction changes in NAWM were not driven by perilesional tissue, nor were they influenced by proximity to the ventricles, challenging the hypothesis of an outside-in pathological process driven by CSF-mediated immune cytotoxic factors. No significant differences were found in conventional DTI parameters. In a cross-validated classification task, FR showed the largest effect size and outperformed all other diffusion imaging metrics in discerning lesions from contralateral NAWM. Taken together, our data provide evidence for the presence of widespread microstructural changes in the NAWM in early MS stages that are, at least in part, unrelated to focal demyelinating lesions. Interestingly, these pathological changes were not yet detectable by conventional diffusion imaging at this early disease stage, highlighting the sensitivity and value of multi-shell diffusion imaging for better characterizing axonal microstructure in MS.


Asunto(s)
Imagen de Difusión por Resonancia Magnética/métodos , Esclerosis Múltiple/patología , Neuroimagen/métodos , Sustancia Blanca/patología , Adulto , Axones/patología , Femenino , Humanos , Masculino , Esclerosis Múltiple/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen
20.
Neuroscience ; 403: 27-34, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30708049

RESUMEN

In multiple sclerosis (MS), it would be of clinical value to be able to track the progression of axonal pathology, especially before the manifestation of clinical disability. However, non-invasive evaluation of short-term longitudinal progression of white matter integrity is challenging. This study aims at assessing longitudinal changes in the restricted (i.e. intracellular) diffusion signal fraction (FR) in early-stage MS by using ultra-high gradient strength multi-shell diffusion magnetic resonance imaging. In 11 early MS subjects (disease duration ≤5 years), FR was obtained at two timepoints (one year apart) through the Composite Hindered and Restricted Model of Diffusion, along with conventional Diffusion Tensor Imaging metrics. At follow-up, no statistically significant change was detected in clinical variables, while all imaging metrics showed statistically significant longitudinal changes (p < 0.01, corrected for multiple comparisons) in widespread regions in normal-appearing white matter (NAWM). The most extensive longitudinal changes were observed in FR, including areas known to include a large fraction of crossing fibers. Furthermore, FR was also the only metric showing significant longitudinal changes in lesions that were present at both time points (p = 0.007), with no significant differences found for conventional diffusion metrics. Finally, FR was the only diffusion metric (as compared to Diffusion Tensor Imaging) that revealed pre-lesional changes already present at baseline. Taken together, our data provide evidence for progressive microstructural damage in the NAWM of early MS cases detectable already at 1-year follow-up. Our study highlights the value of multi-shell diffusion imaging for sensitive tracking of disease evolution in MS before any clinical changes are observed. This article is part of a Special Issue entitled: SI: MRI and Neuroinflammation.


Asunto(s)
Imagen de Difusión por Resonancia Magnética , Esclerosis Múltiple/diagnóstico por imagen , Adulto , Factores de Edad , Axones , Encéfalo/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética/métodos , Progresión de la Enfermedad , Femenino , Estudios de Seguimiento , Humanos , Interpretación de Imagen Asistida por Computador , Estudios Longitudinales , Masculino , Reproducibilidad de los Resultados , Sustancia Blanca/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA