Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Cell ; 176(4): 816-830.e18, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30595451

RESUMEN

The temporal order of DNA replication (replication timing [RT]) is highly coupled with genome architecture, but cis-elements regulating either remain elusive. We created a series of CRISPR-mediated deletions and inversions of a pluripotency-associated topologically associating domain (TAD) in mouse ESCs. CTCF-associated domain boundaries were dispensable for RT. CTCF protein depletion weakened most TAD boundaries but had no effect on RT or A/B compartmentalization genome-wide. By contrast, deletion of three intra-TAD CTCF-independent 3D contact sites caused a domain-wide early-to-late RT shift, an A-to-B compartment switch, weakening of TAD architecture, and loss of transcription. The dispensability of TAD boundaries and the necessity of these "early replication control elements" (ERCEs) was validated by deletions and inversions at additional domains. Our results demonstrate that discrete cis-regulatory elements orchestrate domain-wide RT, A/B compartmentalization, TAD architecture, and transcription, revealing fundamental principles linking genome structure and function.


Asunto(s)
Momento de Replicación del ADN/fisiología , Replicación del ADN/genética , Replicación del ADN/fisiología , Animales , Factor de Unión a CCCTC/genética , Factor de Unión a CCCTC/metabolismo , Cromatina , ADN/genética , Momento de Replicación del ADN/genética , Células Madre Embrionarias , Elementos de Facilitación Genéticos/genética , Mamíferos/genética , Mamíferos/metabolismo , Ratones , Proteínas Represoras/metabolismo , Análisis Espacio-Temporal
2.
Chromosome Res ; 30(4): 401-414, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35781769

RESUMEN

The human genome is divided into functional units that replicate at specific times during S-phase. This temporal program is known as replication timing (RT) and is coordinated with the spatial organization of the genome and transcriptional activity. RT is also cell type-specific, dynamically regulated during development, and alterations in RT are observed in multiple diseases. Thus, the precise measure of RT is critical to understand the role of RT in gene function regulation. Distinct methods for assaying the RT program exist; however, conventional methods require thousands of cells as input, prohibiting its applicability to samples with limited cell numbers such as those from disease patients or from early developing embryos. Although single-cell RT analyses have been developed, these methods are low throughput, require generation of numerous libraries, increased sequencing costs, and produce low resolution data. Here, we developed an improved method to measure RT genome-wide that enables high-resolution analysis of low input samples. This method incorporates direct cell sorting into lysis buffer, as well as DNA fragmentation and library preparation in a single tube, resulting in higher yields, increased quality, and reproducibility with decreased costs. We also performed a systematic data processing analysis to provide standardized parameters for RT measurement. This optimized method facilitates RT analysis and will enable its application to a broad range of studies investigating the role of RT in gene expression, nuclear architecture, and disease.


Asunto(s)
Momento de Replicación del ADN , Genoma Humano , Humanos , Reproducibilidad de los Resultados , Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Replicación del ADN
3.
Genome Res ; 28(6): 800-811, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29735606

RESUMEN

DNA replication occurs in a defined temporal order known as the replication-timing (RT) program. RT is regulated during development in discrete chromosomal units, coordinated with transcriptional activity and 3D genome organization. Here, we derived distinct cell types from F1 hybrid musculus × castaneus mouse crosses and exploited the high single-nucleotide polymorphism (SNP) density to characterize allelic differences in RT (Repli-seq), genome organization (Hi-C and promoter-capture Hi-C), gene expression (total nuclear RNA-seq), and chromatin accessibility (ATAC-seq). We also present HARP, a new computational tool for sorting SNPs in phased genomes to efficiently measure allele-specific genome-wide data. Analysis of six different hybrid mESC clones with different genomes (C57BL/6, 129/sv, and CAST/Ei), parental configurations, and gender revealed significant RT asynchrony between alleles across ∼12% of the autosomal genome linked to subspecies genomes but not to parental origin, growth conditions, or gender. RT asynchrony in mESCs strongly correlated with changes in Hi-C compartments between alleles but not as strongly with SNP density, gene expression, imprinting, or chromatin accessibility. We then tracked mESC RT asynchronous regions during development by analyzing differentiated cell types, including extraembryonic endoderm stem (XEN) cells, four male and female primary mouse embryonic fibroblasts (MEFs), and neural precursor cells (NPCs) differentiated in vitro from mESCs with opposite parental configurations. We found that RT asynchrony and allelic discordance in Hi-C compartments seen in mESCs were largely lost in all differentiated cell types, accompanied by novel sites of allelic asynchrony at a considerably smaller proportion of the genome, suggesting that genome organization of homologs converges to similar folding patterns during cell fate commitment.


Asunto(s)
Momento de Replicación del ADN/genética , Replicación del ADN/genética , Genoma/genética , Células-Madre Neurales/citología , Alelos , Animales , Diferenciación Celular/genética , Linaje de la Célula/genética , Femenino , Fibroblastos/citología , Regulación del Desarrollo de la Expresión Génica , Masculino , Ratones , Células Madre Embrionarias de Ratones/citología , Regiones Promotoras Genéticas
4.
Proc Natl Acad Sci U S A ; 114(51): E10972-E10980, 2017 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-29196523

RESUMEN

Progeroid syndromes are rare genetic disorders that phenotypically resemble natural aging. Different causal mutations have been identified, but no molecular alterations have been identified that are in common to these diseases. DNA replication timing (RT) is a robust cell type-specific epigenetic feature highly conserved in the same cell types from different individuals but altered in disease. Here, we characterized DNA RT program alterations in Hutchinson-Gilford progeria syndrome (HGPS) and Rothmund-Thomson syndrome (RTS) patients compared with natural aging and cellular senescence. Our results identified a progeroid-specific RT signature that is common to cells from three HGPS and three RTS patients and distinguishes them from healthy individuals across a wide range of ages. Among the RT abnormalities, we identified the tumor protein p63 gene (TP63) as a gene marker for progeroid syndromes. By using the redifferentiation of four patient-derived induced pluripotent stem cells as a model for the onset of progeroid syndromes, we tracked the progression of RT abnormalities during development, revealing altered RT of the TP63 gene as an early event in disease progression of both HGPS and RTS. Moreover, the RT abnormalities in progeroid patients were associated with altered isoform expression of TP63 Our findings demonstrate the value of RT studies to identify biomarkers not detected by other methods, reveal abnormal TP63 RT as an early event in progeroid disease progression, and suggest TP63 gene regulation as a potential therapeutic target.


Asunto(s)
Momento de Replicación del ADN , Progeria/genética , Anciano de 80 o más Años , Biomarcadores , Niño , Fibroblastos/metabolismo , Expresión Génica , Genómica/métodos , Humanos , Recién Nacido , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Progeria/metabolismo , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética
5.
J Cell Biochem ; 112(2): 531-40, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21268074

RESUMEN

In the interphase nucleus of metazoan cells the DNA is organized in supercoiled loops anchored to a proteinaceous substructure known as the nuclear matrix (NM). The DNA is anchored to the NM by means of non-coding sequences of variable length known as matrix attachment regions or MARs operationally classified in structural-constitutive, resistant to high-salt extraction and transient-functional, non-resistant to high-salt extraction. The former are also known as true loop attachment regions or LARs that determine structural DNA loops. The DNA-NM interactions define a higher order structure within the cell nucleus (NHOS). We studied in a comparative fashion the NHOS in two primary cell types from the rat: hepatocytes and naive B lymphocytes, by analyzing the topological relationships between the NM and a set of eight short gene sequences located in six separate chromosomes and as such representing a coarse-grained, large-scale sample of the actual organization of nuclear DNA into structural loop domains. Our results indicate that such an organization is cell-type specific since most of the gene sequences studied showed significant differences in their relative position to the NM according to cell type. Such cell-type specific differences in the NHOS have no obvious correlation with the tissue-specific transcriptional activity of the corresponding genes, supporting the notion that permanent, structural DNA loops are different from transient, functional DNA loops that may be associated with transcription.


Asunto(s)
Linfocitos B/metabolismo , ADN/química , ADN/metabolismo , Hepatocitos/metabolismo , Matriz Nuclear/metabolismo , Animales , Células Cultivadas , Masculino , Conformación de Ácido Nucleico , Ratas , Ratas Wistar , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
6.
Nat Commun ; 11(1): 3696, 2020 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-32728046

RESUMEN

ENCODE comprises thousands of functional genomics datasets, and the encyclopedia covers hundreds of cell types, providing a universal annotation for genome interpretation. However, for particular applications, it may be advantageous to use a customized annotation. Here, we develop such a custom annotation by leveraging advanced assays, such as eCLIP, Hi-C, and whole-genome STARR-seq on a number of data-rich ENCODE cell types. A key aspect of this annotation is comprehensive and experimentally derived networks of both transcription factors and RNA-binding proteins (TFs and RBPs). Cancer, a disease of system-wide dysregulation, is an ideal application for such a network-based annotation. Specifically, for cancer-associated cell types, we put regulators into hierarchies and measure their network change (rewiring) during oncogenesis. We also extensively survey TF-RBP crosstalk, highlighting how SUB1, a previously uncharacterized RBP, drives aberrant tumor expression and amplifies the effect of MYC, a well-known oncogenic TF. Furthermore, we show how our annotation allows us to place oncogenic transformations in the context of a broad cell space; here, many normal-to-tumor transitions move towards a stem-like state, while oncogene knockdowns show an opposing trend. Finally, we organize the resource into a coherent workflow to prioritize key elements and variants, in addition to regulators. We showcase the application of this prioritization to somatic burdening, cancer differential expression and GWAS. Targeted validations of the prioritized regulators, elements and variants using siRNA knockdowns, CRISPR-based editing, and luciferase assays demonstrate the value of the ENCODE resource.


Asunto(s)
Bases de Datos Genéticas , Genómica , Neoplasias/genética , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Redes Reguladoras de Genes , Humanos , Mutación/genética , Reproducibilidad de los Resultados , Factores de Transcripción/metabolismo
7.
Blood Adv ; 3(21): 3201-3213, 2019 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-31698451

RESUMEN

Human B-cell precursor acute lymphoid leukemias (BCP-ALLs) comprise a group of genetically and clinically distinct disease entities with features of differentiation arrest at known stages of normal B-lineage differentiation. We previously showed that BCP-ALL cells display unique and clonally heritable, stable DNA replication timing (RT) programs (ie, programs describing the variable order of replication and subnuclear 3D architecture of megabase-scale chromosomal units of DNA in different cell types). To determine the extent to which BCP-ALL RT programs mirror or deviate from specific stages of normal human B-cell differentiation, we transplanted immunodeficient mice with quiescent normal human CD34+ cord blood cells and obtained RT signatures of the regenerating B-lineage populations. We then compared these with RT signatures for leukemic cells from a large cohort of BCP-ALL patients with varied genetic subtypes and outcomes. The results identify BCP-ALL subtype-specific features that resemble specific stages of B-cell differentiation and features that seem to be associated with relapse. These results suggest that the genesis of BCP-ALL involves alterations in RT that reflect biologically significant and potentially clinically relevant leukemia-specific epigenetic changes.


Asunto(s)
Cromosomas/genética , Momento de Replicación del ADN , Leucemia/genética , Leucemia/patología , Animales , Linfocitos B/inmunología , Linfocitos B/metabolismo , Linfocitos B/patología , Biomarcadores , Neoplasias del Sistema Nervioso Central/secundario , Biología Computacional/métodos , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Susceptibilidad a Enfermedades , Femenino , Perfilación de la Expresión Génica , Variación Genética , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Xenoinjertos , Humanos , Inmunofenotipificación , Leucemia/mortalidad , Masculino , Ratones , Ratones Noqueados , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/mortalidad , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patología
8.
Cell Cycle ; 17(13): 1667-1681, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29963964

RESUMEN

Organismal aging entails a gradual decline of normal physiological functions and a major contributor to this decline is withdrawal of the cell cycle, known as senescence. Senescence can result from telomere diminution leading to a finite number of population doublings, known as replicative senescence (RS), or from oncogene overexpression, as a protective mechanism against cancer. Senescence is associated with large-scale chromatin re-organization and changes in gene expression. Replication stress is a complex phenomenon, defined as the slowing or stalling of replication fork progression and/or DNA synthesis, which has serious implications for genome stability, and consequently in human diseases. Aberrant replication fork structures activate the replication stress response leading to the activation of dormant origins, which is thought to be a safeguard mechanism to complete DNA replication on time. However, the relationship between replicative stress and the changes in the spatiotemporal program of DNA replication in senescence progression remains unclear. Here, we studied the DNA replication program during senescence progression in proliferative and pre-senescent cells from donors of various ages by single DNA fiber combing of replicated DNA, origin mapping by sequencing short nascent strands and genome-wide profiling of replication timing (TRT). We demonstrate that, progression into RS leads to reduced replication fork rates and activation of dormant origins, which are the hallmarks of replication stress. However, with the exception of a delay in RT of the CREB5 gene in all pre-senescent cells, RT was globally unaffected by replication stress during entry into either oncogene-induced or RS. Consequently, we conclude that RT alterations associated with physiological and accelerated aging, do not result from senescence progression. Our results clarify the interplay between senescence, aging and replication programs and demonstrate that RT is largely resistant to replication stress.


Asunto(s)
Senescencia Celular , Momento de Replicación del ADN , Estrés Fisiológico , Proteína de Unión al Elemento de Respuesta al AMP Cíclico/metabolismo , Fibroblastos/citología , Humanos , Laminas/metabolismo , Oncogenes , Progeria/patología , Dominios Proteicos
9.
Nat Protoc ; 13(5): 819-839, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29599440

RESUMEN

This protocol is an extension to: Nat. Protoc. 6, 870-895 (2014); doi:10.1038/nprot.2011.328; published online 02 June 2011Cycling cells duplicate their DNA content during S phase, following a defined program called replication timing (RT). Early- and late-replicating regions differ in terms of mutation rates, transcriptional activity, chromatin marks and subnuclear position. Moreover, RT is regulated during development and is altered in diseases. Here, we describe E/L Repli-seq, an extension of our Repli-chip protocol. E/L Repli-seq is a rapid, robust and relatively inexpensive protocol for analyzing RT by next-generation sequencing (NGS), allowing genome-wide assessment of how cellular processes are linked to RT. Briefly, cells are pulse-labeled with BrdU, and early and late S-phase fractions are sorted by flow cytometry. Labeled nascent DNA is immunoprecipitated from both fractions and sequenced. Data processing leads to a single bedGraph file containing the ratio of nascent DNA from early versus late S-phase fractions. The results are comparable to those of Repli-chip, with the additional benefits of genome-wide sequence information and an increased dynamic range. We also provide computational pipelines for downstream analyses, for parsing phased genomes using single-nucleotide polymorphisms (SNPs) to analyze RT allelic asynchrony, and for direct comparison to Repli-chip data. This protocol can be performed in up to 3 d before sequencing, and requires basic cellular and molecular biology skills, as well as a basic understanding of Unix and R.


Asunto(s)
División Celular , Replicación del ADN , ADN/biosíntesis , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Células Madre Embrionarias de Ratones/fisiología , Tiempo , Animales , Bromodesoxiuridina/metabolismo , Línea Celular , Inmunoprecipitación de Cromatina , Ratones , Coloración y Etiquetado/métodos
10.
J Plant Physiol ; 164(12): 1572-82, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17485137

RESUMEN

Increased oxidative stress displayed during dark-senescence of wheat leaves (Triticum aestivum L.) is caused not only by the increased levels of radicals but also by a loss of antioxidant capacity. Mature leaves were incubated in 6-benzylaminopurine (BAP 10(-4)M) or water (control) during 6d in the dark. The senescence-delaying effect of BAP was associated with the retention of the chloroplast structure, 60% of the initial content of chlorophyll (Chl) and 77% of the initial content of protein. BAP reduced the degradation of the light-harvesting chlorophyll a/b binding protein (LHCP-2), and the large (LSU) and small subunits (SSU) of Rubisco. Our results indicated that the presence of the NADPH:protochlorophyllide oxidoreductase (POR, EC.1.6.99.1) was not promoted by the cytokinin, leading to the conclusion that BAP maintains the level of Chl, preventing its degradation, rather than inducing Chl biosynthesis. The internal structure of chloroplasts was maintained in BAP-treated leaves for up to 6d, with well-organized grana thylakoids and small plastoglobuli; in contrast, chloroplasts of control leaves deteriorated rapidly from day 4 with disorganized internal membranes, and more and larger plastoglobuli. BAP increased the activities of catalase (CAT, EC 1.11.1.6) and ascorbate peroxidase (APX, EC 1.11.1.11) and reduced the level of H(2)O(2) in the delayed-senescence tissue. The present research indicates that BAP reduces levels of reactive oxygen species (ROS), and enhances the activity of antioxidant enzymes (CAT, APX). Our results suggest that BAP protects the cell membranes and the photosynthetic machinery from oxidative damage during delay of senescence in the dark.


Asunto(s)
Catalasa/metabolismo , Senescencia Celular/efectos de los fármacos , Cloroplastos/metabolismo , Citocininas/farmacología , Peroxidasas/metabolismo , Triticum/citología , Triticum/enzimología , Antioxidantes/metabolismo , Ascorbato Peroxidasas , Compuestos de Bencilo/farmacología , Carotenoides/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Clorofila/metabolismo , Cloroplastos/efectos de los fármacos , Cloroplastos/ultraestructura , Oscuridad , Immunoblotting , Oxidación-Reducción/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Pigmentos Biológicos/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/ultraestructura , Proteínas de Plantas/metabolismo , Purinas/farmacología , Triticum/efectos de los fármacos , Xantófilas/metabolismo
11.
Gene ; 493(1): 1-8, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22155708

RESUMEN

In the interphase nucleus of metazoan cells the DNA is organized in supercoiled loops anchored to a nuclear matrix (NM). The DNA is anchored by non-coding sequences known as MARs, in situ operationally classified in structural-constitutive and transient-functional. We have previously shown that the organization of the multi-gene rat-albumin family locus into structural DNA loops is remarkably different between primary hepatocytes, where such genes are expressed, and naïve B lymphocytes, where such genes are not expressed. These results together with previous observations from other authors suggested that the local organization into structural DNA loops might determine the potential for a gene to be expressed or not. Thus in the present work we determined the organization of the Fyn locus, a single large transcriptional unit, into structural DNA loops in both primary rat hepatocytes and B lymphocytes. Our results indicate that the organization of the Fyn locus in structural DNA loops is cell type-specific and yet the gene is expressed in both cell types, supporting the notion that in vivo the organization of DNA into structural loops is primarily determined by factors independent of transcription but also that transcription adapts to work upon radically different structural DNA loop organizations.


Asunto(s)
Linfocitos B , ADN/química , Regulación de la Expresión Génica , Hepatocitos , Conformación de Ácido Nucleico , Animales , Mapeo Cromosómico , Masculino , Matriz Nuclear/metabolismo , Especificidad de Órganos , Ratas , Ratas Wistar , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA