Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Revista
País de afiliación
Intervalo de año de publicación
1.
mBio ; 9(4)2018 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-30154260

RESUMEN

Flavor production in yeast fermentation is of paramount importance for industrial production of alcoholic beverages. Although major enzymes of flavor compound biosynthesis have been identified, few specific mutations responsible for strain diversity in flavor production are known. The ATF1-encoded alcohol acetyl coenzyme A (acetyl-CoA) transferase (AATase) is responsible for the majority of acetate ester biosynthesis, but other components affecting strain diversity remain unknown. We have performed parallel polygenic analysis of low production of ethyl acetate, a compound with an undesirable solvent-like off-flavor, in strains with and without deletion of ATF1 We identified two unique causative mutations, eat1K179fs and snf8E148*, not present in any other sequenced yeast strain and responsible for most ethyl acetate produced in absence of ATF1EAT1 encodes a putative mitochondrial ethanol acetyl-CoA transferase (EATase) and its overexpression, but not that of EAT1K179fs , and strongly increases ethyl acetate without affecting other flavor acetate esters. Unexpectedly, a higher level of acetate esters (including ethyl acetate) was produced when eat1K179fs was present together with ATF1 in the same strain, suggesting that the Eat1 and Atf1 enzymes are intertwined. On the other hand, introduction of snf8E148* lowered ethyl acetate levels also in the presence of ATF1, and it affected other aroma compounds, growth, and fermentation as well. Engineering of snf8E148* in three industrial yeast strains (for production of wine, saké, and ale beer) and fermentation in an application-relevant medium showed a high but strain-dependent potential for flavor enhancement. Our work has identified EAT1 and SNF8 as new genetic elements determining ethyl acetate production diversity in yeast strains.IMPORTANCE Basic research with laboratory strains of the yeast Saccharomyces cerevisiae has identified the structural genes of most metabolic enzymes, as well as genes encoding major regulators of metabolism. On the other hand, more recent work on polygenic analysis of yeast biodiversity in natural and industrial yeast strains is revealing novel components of yeast metabolism. A major example is the metabolism of flavor compounds, a particularly important property of industrial yeast strains used for the production of alcoholic beverages. In this work, we have performed polygenic analysis of production of ethyl acetate, an important off-flavor compound in beer and other alcoholic beverages. To increase the chances of identifying novel components, we have used in parallel a wild-type strain and a strain with a deletion of ATF1 encoding the main enzyme of acetate ester biosynthesis. This revealed a new structural gene, EAT1, encoding a putative mitochondrial enzyme, which was recently identified as an ethanol acetyl-CoA transferase in another yeast species. We also identified a novel regulatory gene, SNF8, which has not previously been linked to flavor production. Our results show that polygenic analysis of metabolic traits in the absence of major effector genes can reveal novel structural and regulatory genes. The mutant alleles identified can be used to affect the flavor profile in industrial yeast strains for production of alcoholic beverages in more subtle ways than by deletion or overexpression of the already known major effector genes and without significantly altering other industrially important traits. The effect of the novel variants was dependent on the genetic background, with a highly desirable outcome in the flavor profile of an ale brewing yeast.


Asunto(s)
Acetatos/metabolismo , Acetiltransferasas/metabolismo , Aciltransferasas/metabolismo , Vías Biosintéticas/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Proteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Aciltransferasas/genética , Bebidas Alcohólicas/microbiología , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Fermentación , Ingeniería Metabólica , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
2.
mBio ; 8(6)2017 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-29114020

RESUMEN

Flavor compound metabolism is one of the last areas in metabolism where multiple genes encoding biosynthetic enzymes are still unknown. A major challenge is the involvement of side activities of enzymes having their main function in other areas of metabolism. We have applied pooled-segregant whole-genome sequence analysis to identify novel Saccharomyces cerevisiae genes affecting production of phenylethyl acetate (2-PEAc). This is a desirable flavor compound of major importance in alcoholic beverages imparting rose- and honey-like aromas, with production of high 2-PEAc levels considered a superior trait. Four quantitative trait loci (QTLs) responsible for high 2-PEAc production were identified, with two loci each showing linkage to the genomes of the BTC.1D and ER18 parents. The first two loci were investigated further. The causative genes were identified by reciprocal allele swapping into both parents using clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9. The superior allele of the first major causative gene, FAS2, was dominant and contained two unique single nucleotide polymorphisms (SNPs) responsible for high 2-PEAc production that were not present in other sequenced yeast strains. FAS2 encodes the alpha subunit of the fatty acid synthetase complex. Surprisingly, the second causative gene was a mutant allele of TOR1, a gene involved in nitrogen regulation. Exchange of both superior alleles in the ER18 parent strain increased 2-PEAc production 70%, nearly to the same level as in the best superior segregant. Our results show that polygenic analysis combined with CRISPR/Cas9-mediated allele exchange is a powerful tool for identification of genes encoding missing metabolic enzymes and for development of industrial yeast strains generating novel flavor profiles in alcoholic beverages.IMPORTANCE Multiple reactions in flavor metabolism appear to be catalyzed by side activities of other enzymes that have been difficult to identify. We have applied genetic mapping of quantitative trait loci in the yeast Saccharomyces cerevisiae to identify mutant alleles of genes determining the production of phenylethyl acetate, an important flavor compound imparting rose- and honey-like aromas to alcoholic beverages. We identified a unique, dominant allele of FAS2 that supports high production of phenylethyl acetate. FAS2 encodes a subunit of the fatty acid synthetase complex and apparently exerts an important side activity on one or more alternative substrates in flavor compound synthesis. The second mutant allele contained a nonsense mutation in TOR1, a gene involved in nitrogen regulation of growth. Together the two alleles strongly increased the level of phenylethyl acetate. Our work highlights the potential of genetic mapping of quantitative phenotypic traits to identify novel enzymes and regulatory components in yeast metabolism, including regular metabolic enzymes with unknown side activities responsible for biosynthesis of specific flavor compounds. The superior alleles identified can be used to develop industrial yeast strains generating novel flavor profiles in alcoholic beverages.


Asunto(s)
Acetatos/metabolismo , Alelos , Alcohol Feniletílico/metabolismo , Sitios de Carácter Cuantitativo , Rosa/química , Saccharomyces cerevisiae/genética , Acetatos/química , Alcoholes/química , Mapeo Cromosómico , Ácido Graso Sintasas/genética , Aromatizantes/metabolismo , Mutación , Alcohol Feniletílico/análogos & derivados , Alcohol Feniletílico/química , Fosfatidilinositol 3-Quinasas/genética , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA