Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
PLoS Genet ; 18(6): e1010279, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35727851

RESUMEN

The sustainable control of many highly damaging insect crop pests and disease vectors is threatened by the evolution of insecticide resistance. As a consequence, strategies have been developed that aim to prevent or delay resistance development by rotating or mixing insecticides with different modes of action (MoA). However, these approaches can be compromised by the emergence of mechanisms that confer cross-resistance to insecticides with different MoA. Despite the applied importance of cross-resistance, its evolutionary underpinnings remain poorly understood. Here we reveal how a single gene evolved the capacity to detoxify two structurally unrelated insecticides with different MoA. Using transgenic approaches we demonstrate that a specific variant of the cytochrome P450 CYP6ER1, previously shown to confer resistance to the neonicotinoid imidacloprid in the brown planthopper, N. lugens, also confers cross-resistance to the phenylpyrazole ethiprole. CYP6ER1 is duplicated in resistant strains, and we show that while the acquisition of mutations in two encoded substrate recognition sites (SRS) of one of the parologs led to resistance to imidacloprid, a different set of mutations, outside of known SRS, are primarily responsible for resistance to ethiprole. Epistatic interactions between these mutations and their genetic background suggest that the evolution of dual resistance from the same gene copy involved functional trade-offs in respect to CYP6ER1 catalytic activity for ethiprole versus imidacloprid. Surprisingly, the mutations leading to ethiprole and imidacloprid resistance do not confer the ability to detoxify the insecticide fipronil, another phenylpyrazole with close structural similarity to ethiprole. Taken together, these findings reveal how gene duplication and divergence can lead to the evolution of multiple novel functions from a single gene. From an applied perspective they also demonstrate how cross-resistance to structurally unrelated insecticides can evolve, and illustrate the difficulty in predicting cross-resistance profiles mediated by metabolic mechanisms.


Asunto(s)
Hemípteros , Insecticidas , Animales , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Duplicación de Gen , Resistencia a los Insecticidas/genética , Insecticidas/metabolismo , Insecticidas/farmacología
2.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34074777

RESUMEN

The evolution of resistance to insecticides threatens the sustainable control of many of the world's most damaging insect crop pests and disease vectors. To effectively combat resistance, it is important to understand its underlying genetic architecture, including the type and number of genetic variants affecting resistance and their interactions with each other and the environment. While significant progress has been made in characterizing the individual genes or mutations leading to resistance, our understanding of how genetic variants interact to influence its phenotypic expression remains poor. Here, we uncover a mechanism of insecticide resistance resulting from transposon-mediated insertional mutagenesis of a genetically dominant but insecticide-susceptible allele that enables the adaptive potential of a previously unavailable recessive resistance allele to be unlocked. Specifically, we identify clones of the aphid pest Myzus persicae that carry a resistant allele of the essential voltage-gated sodium channel (VGSC) gene with the recessive M918T and L1014F resistance mutations, in combination with an allele lacking these mutations but carrying a Mutator-like element transposon insertion that disrupts the coding sequence of the VGSC. This results in the down-regulation of the dominant susceptible allele and monoallelic expression of the recessive resistant allele, rendering the clones resistant to the insecticide bifenthrin. These findings are a powerful example of how transposable elements can provide a source of evolutionary potential that can be revealed by environmental and genetic perturbation, with applied implications for the control of highly damaging insect pests.


Asunto(s)
Alelos , Áfidos/genética , Elementos Transponibles de ADN , Genes Recesivos , Resistencia a los Insecticidas , Mutagénesis Insercional , Animales , Evolución Molecular
3.
Pestic Biochem Physiol ; 200: 105837, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38582599

RESUMEN

Susceptibility to insecticides is one of the limiting factors preventing wider adoption of natural enemies to control insect pest populations. Identification and selective breeding of insecticide tolerant strains of commercially used biological control agents (BCAs) is one of the approaches to overcome this constraint. Although a number of beneficial insects have been selected for increased tolerance to insecticides the molecular mechanisms underpinning these shifts in tolerance are not well characterised. Here we investigated the molecular mechanisms of enhanced tolerance of a lab selected strain of Orius laevigatus (Fieber) to the commonly used biopesticide spinosad. Transcriptomic analysis showed that spinosad tolerance is not a result of overexpressed detoxification genes. Molecular analysis of the target site for spinosyns, the nicotinic acetylcholine receptor (nAChR), revealed increased expression of truncated transcripts of the nAChR α6 subunit in the spinosad selected strain, a mechanism of resistance which was described previously in insect pest species. Collectively, our results demonstrate the mechanisms by which some beneficial biological control agents can evolve insecticide tolerance and will inform the development and deployment of insecticide-tolerant natural enemies in integrated pest management strategies.


Asunto(s)
Insecticidas , Receptores Nicotínicos , Thysanoptera , Animales , Thysanoptera/metabolismo , Insecticidas/toxicidad , Resistencia a los Insecticidas/genética , Agentes de Control Biológico/farmacología , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Insectos/genética , Macrólidos/farmacología , Combinación de Medicamentos
4.
Pestic Biochem Physiol ; 198: 105743, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38225086

RESUMEN

The alkaloid, nicotine, produced by tobacco and other Solanaceae as an anti-herbivore defence chemical is one of the most toxic natural insecticides in nature. However, some insects, such as the whitefly species, Trialeurodes vaporariorum and Bemisia tabaci show strong tolerance to this allelochemical and can utilise tobacco as a host. Here, we used biological, molecular and functional approaches to investigate the role of cytochrome P450 enzymes in nicotine tolerance in T. vaporariorum and B. tabaci. Insecticide bioassays revealed that feeding on tobacco resulted in strong induced tolerance to nicotine in both species. Transcriptome profiling of both species reared on tobacco and bean hosts revealed profound differences in the transcriptional response these host plants. Interrogation of the expression of P450 genes in the host-adapted lines revealed that P450 genes belonging to the CYP6DP subfamily are strongly upregulated in lines reared on tobacco. Functional characterisation of these P450s revealed that CYP6DP1 and CYP6DP2 of T. vaporariorum and CYP6DP3 of B. tabaci confer resistance to nicotine in vivo. These three genes, in addition to the B. tabaci P450 CYP6DP5, were also found to confer resistance to the neonicotinoid imidacloprid. Our data provide new insight into the molecular basis of nicotine resistance in insects and illustrates how divergence in the evolution of P450 genes in this subfamily in whiteflies may have impacted the extent to which different species can tolerate a potent natural insecticide.


Asunto(s)
Hemípteros , Insecticidas , Animales , Nicotina/farmacología , Nicotina/metabolismo , Insecticidas/farmacología , Insecticidas/metabolismo , Resistencia a los Insecticidas/genética , Neonicotinoides/farmacología , Neonicotinoides/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Nicotiana/genética , Hemípteros/metabolismo , Nitrocompuestos/farmacología , Nitrocompuestos/metabolismo
5.
Pestic Biochem Physiol ; 202: 105921, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38879297

RESUMEN

The evolution of resistance to insecticides poses a significant threat to pest management programs. Understanding the molecular mechanisms underlying insecticide resistance is essential to design sustainable pest control and resistance management programs. The fall armyworm, Spodoptera frugiperda, is an important insect pest of many crops and has a remarkable ability to evolve resistance to insecticides. In this study, we employed bulk segregant analysis (BSA) combined with DNA and RNA sequencing to characterize the molecular basis of spinetoram resistance in S. frugiperda. Analysis of genomic data derived from spinetoram selected and unselected bulks and the spinetoram-resistant and susceptible parental strains led to the identification of a three-nucleotide deletion in the gene encoding the nicotinic acetylcholine receptor α6 subunit (nAChR α6). Transcriptome profiling identified the upregulation of few genes encoding detoxification enzymes associated with spinetoram resistance. Thus, spinetoram resistance in S. frugiperda appears to be mediated mainly by target site insensitivity with a minor role of detoxification enzymes. Our findings provide insight into the mechanisms underpinning resistance to spinetoram in S. frugiperda and will inform the development of strategies to control this highly damaging, globally distributed crop pest.


Asunto(s)
Resistencia a los Insecticidas , Insecticidas , Spodoptera , Animales , Spodoptera/genética , Spodoptera/efectos de los fármacos , Resistencia a los Insecticidas/genética , Insecticidas/farmacología , Insecticidas/toxicidad , Perfilación de la Expresión Génica , Transcriptoma , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Macrólidos
6.
BMC Biotechnol ; 22(1): 5, 2022 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-35086540

RESUMEN

BACKGROUND: The fall armyworm, Spodoptera frugiperda, is a significant and widespread pest of maize, sorghum, rice, and other economically important crops. Successful management of this caterpillar pest has historically relied upon application of synthetic insecticides and through cultivation of genetically engineered crops expressing insecticidal proteins (Bt crops). Fall armyworm has, however, developed resistance to both synthetic insecticides and Bt crops, which risks undermining the benefits delivered by these important crop protection tools. Previous modelling and empirical studies have demonstrated that releases of insecticide- or Bt-susceptible insects genetically modified to express conditional female mortality can both dilute insecticide resistance and suppress pest populations. RESULTS: Here, we describe the first germline transformation of the fall armyworm and the development of a genetically engineered male-selecting self-limiting strain, OX5382G, which exhibits complete female mortality in the absence of an additive in the larval diet. Laboratory experiments showed that males of this strain are competitive against wild-type males for copulations with wild-type females, and that the OX5382G self-limiting transgene declines rapidly to extinction in closed populations following the cessation of OX5382G male releases. Population models simulating the release of OX5382G males in tandem with Bt crops and non-Bt 'refuge' crops show that OX5382G releases can suppress fall armyworm populations and delay the spread of resistance to insecticidal proteins. CONCLUSIONS: This article describes the development of self-limiting fall armyworm designed to control this pest by suppressing pest populations, and population models that demonstrate its potential as a highly effective method of managing resistance to Bt crops in pest fall armyworm populations. Our results provide early promise for a potentially valuable future addition to integrated pest management strategies for fall armyworm and other pests for which resistance to existing crop protection measures results in damage to crops and impedes sustainable agriculture.


Asunto(s)
Proteínas Hemolisinas , Insecticidas , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Protección de Cultivos , Productos Agrícolas/genética , Endotoxinas , Femenino , Proteínas Hemolisinas/genética , Insecticidas/farmacología , Masculino , Plantas Modificadas Genéticamente/metabolismo , Spodoptera/genética , Zea mays/genética
7.
PLoS Genet ; 15(2): e1007903, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30716069

RESUMEN

The impact of pesticides on the health of bee pollinators is determined in part by the capacity of bee detoxification systems to convert these compounds to less toxic forms. For example, recent work has shown that cytochrome P450s of the CYP9Q subfamily are critically important in defining the sensitivity of honey bees and bumblebees to pesticides, including neonicotinoid insecticides. However, it is currently unclear if solitary bees have functional equivalents of these enzymes with potentially serious implications in relation to their capacity to metabolise certain insecticides. To address this question, we sequenced the genome of the red mason bee, Osmia bicornis, the most abundant and economically important solitary bee species in Central Europe. We show that O. bicornis lacks the CYP9Q subfamily of P450s but, despite this, exhibits low acute toxicity to the N-cyanoamidine neonicotinoid thiacloprid. Functional studies revealed that variation in the sensitivity of O. bicornis to N-cyanoamidine and N-nitroguanidine neonicotinoids does not reside in differences in their affinity for the nicotinic acetylcholine receptor or speed of cuticular penetration. Rather, a P450 within the CYP9BU subfamily, with recent shared ancestry to the Apidae CYP9Q subfamily, metabolises thiacloprid in vitro and confers tolerance in vivo. Our data reveal conserved detoxification pathways in model solitary and eusocial bees despite key differences in the evolution of specific pesticide-metabolising enzymes in the two species groups. The discovery that P450 enzymes of solitary bees can act as metabolic defence systems against certain pesticides can be leveraged to avoid negative pesticide impacts on these important pollinators.


Asunto(s)
Abejas/efectos de los fármacos , Abejas/genética , Neonicotinoides/farmacología , Animales , Evolución Biológica , Sistema Enzimático del Citocromo P-450/genética , Europa (Continente) , Genómica/métodos , Insecticidas/farmacología , Polinización/efectos de los fármacos , Polinización/genética , Tiazinas/farmacología
8.
Pestic Biochem Physiol ; 166: 104562, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32448417

RESUMEN

The buff-tailed bumblebee, Bombus terrestris audax is an important pollinator within both landscape ecosystems and agricultural crops. During their lifetime bumblebees are regularly challenged by various environmental stressors including insecticides. Historically the honey bee (Apis mellifera spp.) has been used as an 'indicator' species for 'standard' ecotoxicological testing, but it has been suggested that it is not always a good proxy for other eusocial or solitary bees. To investigate this, the susceptibility of B. terrestris to selected pesticides within the neonicotinoid, pyrethroid and organophosphate classes was examined using acute insecticide bioassays. Acute oral and topical LD50 values for B. terrestris against these insecticides were broadly consistent with published results for A. mellifera. For the neonicotinoids, imidacloprid was highly toxic, but thiacloprid and acetamiprid were practically non-toxic. For pyrethroids, deltamethrin was highly toxic, but tau-fluvalinate only slightly toxic. For the organophosphates, chlorpyrifos was highly toxic, but coumaphos practically non-toxic. Bioassays using insecticides with common synergists enhanced the sensitivity of B. terrestris to several insecticides, suggesting detoxification enzymes may provide a level of protection against these compounds. The sensitivity of B. terrestris to compounds within three different insecticide classes is similar to that reported for honey bees, with marked variation in sensitivity to different insecticides within the same insecticide class observed in both species. This finding highlights the need to consider each compound within an insecticide class in isolation rather than extrapolating between different insecticides in the same class or sharing the same mode of action.


Asunto(s)
Insecticidas , Animales , Abejas , Combinación de Medicamentos , Ecosistema , Glicerol , Salicilatos
9.
Pestic Biochem Physiol ; 169: 104674, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32828379

RESUMEN

There is an on-going need to develop new insecticides that are not compromised by resistance and that have improved environmental profiles. However, the cost of developing novel compounds has increased significantly over the last two decades. This is in part due to increased regulatory requirements, including the need to screen both pest and pollinator insect species to ensure that pre-existing resistance will not hamper the efficacy of a new insecticide via cross-resistance, or adversely affect non-target insect species. To add to this problem the collection and maintenance of toxicologically relevant pest and pollinator species and strains is costly and often difficult. Here we present Fly-Tox, a panel of publicly available transgenic Drosophila melanogaster lines each containing one or more pest or pollinator P450 genes that have been previously shown to metabolise insecticides. We describe the range of ways these tools can be used, including in predictive screens to avoid pre-existing cross-resistance, to identify potential resistance-breaking inhibitors, in the initial assessment of potential insecticide toxicity to bee pollinators, and identifying harmful pesticide-pesticide interactions.


Asunto(s)
Resistencia a los Insecticidas/efectos de los fármacos , Insecticidas/farmacología , Animales , Animales Modificados Genéticamente , Abejas , Sistema Enzimático del Citocromo P-450 , Drosophila melanogaster/efectos de los fármacos
10.
Sci Total Environ ; 915: 170174, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38246392

RESUMEN

Bees carry out vital ecosystem services by pollinating both wild and economically important crop plants. However, while performing this function, bee pollinators may encounter potentially harmful xenobiotics in the environment such as pesticides (fungicides, herbicides and insecticides). Understanding the key factors that influence the toxicological outcomes of bee exposure to these chemicals, in isolation or combination, is essential to safeguard their health and the ecosystem services they provide. In this regard, recent work using toxicogenomic and phylogenetic approaches has begun to identify, at the molecular level, key determinants of pesticide sensitivity in bee pollinators. These include detoxification systems that convert pesticides to less toxic forms and key residues in insecticide target-sites that underlie species-specific insecticide selectivity. Here we review this emerging body of research and summarise the state of knowledge of the molecular determinants of pesticide sensitivity in bee pollinators. We identify gaps in our knowledge for future research and examine how an understanding of the genetic basis of bee sensitivity to pesticides can be leveraged to, a) predict and avoid negative bee-pesticide interactions and facilitate the future development of pest-selective bee-safe insecticides, and b) inform traditional effect assessment approaches in bee pesticide risk assessment and address issues of ecotoxicological concern.


Asunto(s)
Fungicidas Industriales , Insecticidas , Plaguicidas , Abejas , Animales , Plaguicidas/análisis , Insecticidas/análisis , Filogenia , Ecosistema , Fungicidas Industriales/análisis
11.
Evol Appl ; 17(1): e13625, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38283601

RESUMEN

Recent work has demonstrated that many bee species have specific cytochrome P450 enzymes (P450s) that can efficiently detoxify certain insecticides. The presence of these P450s, belonging or closely related to the CYP9Q subfamily (CYP9Q-related), is generally well conserved across the diversity of bees. However, the alfalfa leafcutter bee, Megachile rotundata, lacks CYP9Q-related P450s and is 170-2500 times more sensitive to certain insecticides than bee pollinators with these P450s. The extent to which these findings apply to other Megachilidae bee species remains uncertain. To address this knowledge gap, we sequenced the transcriptomes of four Megachile species and leveraged the data obtained, in combination with publicly available genomic data, to investigate the evolution and function of P450s in the Megachilidae. Our analyses reveal that several Megachilidae species, belonging to the Lithurgini, Megachilini and Anthidini tribes, including all species of the Megachile genus investigated, lack CYP9Q-related genes. In place of these genes Megachile species have evolved phylogenetically distinct CYP9 genes, the CYP9DM lineage. Functional expression of these P450s from M. rotundata reveal they lack the capacity to metabolize the neonicotinoid insecticides thiacloprid and imidacloprid. In contrast, species from the Osmiini and Dioxyini tribes of Megachilidae have CYP9Q-related P450s belonging to the CYP9BU subfamily that are able to detoxify thiacloprid. These findings provide new insight into the evolution of P450s that act as key determinants of insecticide sensitivity in bees and have important applied implications for pesticide risk assessment.

12.
Insect Biochem Mol Biol ; 153: 103896, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36587809

RESUMEN

In some aphid species, intraspecific variation in body colour is caused by differential carotenoid content: whilst green aphids contain only yellow carotenoids (ß-, γ-, and ß,γ-carotenes), red aphids additionally possess red carotenoids (torulene and 3,4-didehydrolycopene). Unusually, within animals who typically obtain carotenoids from their diet, ancestral horizontal gene transfer of carotenoid biosynthetic genes from fungi (followed by gene duplication), have imbued aphids with the intrinsic gene repertoire necessary to biosynthesise carotenoids. In the pea aphid, Acyrthosiphon pisum a lycopene (phytoene) desaturase gene (Tor) underpins the red/green phenotype, with this locus present in heterozygous form in red individuals but absent in green aphids, resulting in them being unable to convert lycopene into the red compounds 3,4-didehydrolycopene and torulene. The green peach aphid, Myzus persicae, separated from the pea aphid for ≈45MY also exists as distinct colour variable morphs, with both red and green individuals present. Here, we examined genomic data for both red and green morphs of M. persicae and identified an enlarged (compared to A. pisum) repertoire of 16 carotenoid biosynthetic genes (11 carotenoid desaturases and five carotenoid cyclase/synthase genes). From these, we identify the homolog of A. pisum Tor (here called carotene desaturase 2 or CDE-2) and show through 3D modelling that this homolog can accommodate the torulene precursor lycopene and, through RNA knockdown feeding experiments, demonstrate that disabling CDE-2 expression in red M. persicae clones results in green-coloured offspring. Unlike in A. pisum, we show that functional CDE-2 is present in the genomes of both red and green aphids. However, expression differences between the two colour morphs (350-700 fold CDE-2 overexpression in red clones), potentially driven by variants identified in upstream putative regulatory elements, underpin this phenotype. Thus, whilst aphids have a common origin of their carotenoid biosynthetic pathway, two aphid species separated for over 40MY have evolved very different drivers of intraspecific colour variation.


Asunto(s)
Áfidos , Animales , Áfidos/fisiología , Licopeno/metabolismo , Pigmentación/genética , Carotenoides/metabolismo
13.
Insect Biochem Mol Biol ; 156: 103934, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36990247

RESUMEN

The tobacco whitefly, Bemisia tabaci, is a polyphagous crop pest which causes high levels of economic damage across the globe. Insecticides are often required for the effective control of this species, among which the neonicotinoid class have been particularly widely used. Deciphering the mechanisms responsible for resistance to these chemicals is therefore critical to maintain control of B. tabaci and limit the damage it causes. An important mechanism of resistance to neonicotinoids in B. tabaci is the overexpression of the cytochrome P450 gene CYP6CM1 which leads to the enhanced detoxification of several neonicotinoids. In this study we show that qualitative changes in this P450 dramatically alter its metabolic capacity to detoxify neonicotinoids. CYP6CM1 was significantly over-expressed in two strains of B. tabaci which displayed differing levels of resistance to the neonicotinoids imidacloprid and thiamethoxam. Sequencing of the CYP6CM1 coding sequence from these strains revealed four different alleles encoding isoforms carrying several amino acid changes. Expression of these alleles in vitro and in vivo provided compelling evidence that a mutation (A387G), present in two of the CYP6CM1 alleles, results in enhanced resistance to several neonicotinoids. These data demonstrate the importance of both qualitative and quantitative changes in genes encoding detoxification enzymes in the evolution of insecticide resistance and have applied implications for resistance monitoring programs.


Asunto(s)
Hemípteros , Insecticidas , Animales , Mutación Puntual , Neonicotinoides/farmacología , Neonicotinoides/metabolismo , Insecticidas/farmacología , Insecticidas/metabolismo , Nitrocompuestos/farmacología , Nitrocompuestos/metabolismo , Resistencia a los Insecticidas/genética , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Hemípteros/genética , Hemípteros/metabolismo
14.
Sci Adv ; 9(15): eadg0885, 2023 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-37043574

RESUMEN

Many plants produce chemical defense compounds as protection against antagonistic herbivores. However, how beneficial insects such as pollinators deal with the presence of these potentially toxic chemicals in nectar and pollen is poorly understood. Here, we characterize a conserved mechanism of plant secondary metabolite detoxification in the Hymenoptera, an order that contains numerous highly beneficial insects. Using phylogenetic and functional approaches, we show that the CYP336 family of cytochrome P450 enzymes detoxifies alkaloids, a group of potent natural insecticides, in honeybees and other hymenopteran species that diverged over 281 million years. We linked this function to an aspartic acid residue within the main access channel of CYP336 enzymes that is highly conserved within this P450 family. Together, these results provide detailed insights into the evolution of P450s as a key component of detoxification systems in hymenopteran species and reveal the molecular basis of adaptations arising from interactions between plants and beneficial insects.


Asunto(s)
Alcaloides , Néctar de las Plantas , Abejas , Animales , Néctar de las Plantas/química , Filogenia , Insectos , Sistema Enzimático del Citocromo P-450/genética
15.
Insect Biochem Mol Biol ; 159: 103983, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37380137

RESUMEN

The tomato leafminer, Tuta absoluta, is an invasive crop pest that has evolved resistance to many of the insecticides used for its control. To facilitate the investigation of the underpinning mechanisms of resistance in this species we generated a contiguous genome assembly using long-read sequencing data. We leveraged this genomic resource to investigate the genetic basis of resistance to the diamide insecticide chlorantraniliprole in Spanish strains of T. absoluta that exhibit high levels of resistance to this insecticide. Transcriptomic analyses revealed that, in these strains, resistance is not associated with previously reported target-site mutations in the diamide target-site, the ryanodine receptor, but rather is associated with the marked overexpression (20- to >100-fold) of a gene encoding a UDP-glycosyltransferase (UGT). Functional expression of this UGT, UGT34A23, via ectopic expression in Drosophila melanogaster demonstrated that it confers strong and significant resistance in vivo. The genomic resources generated in this study provide a powerful resource for further research on T. absoluta. Our findings on the mechanisms underpinning resistance to chlorantraniliprole will inform the development of sustainable management strategies for this important pest.


Asunto(s)
Insecticidas , Lepidópteros , Mariposas Nocturnas , Solanum lycopersicum , Animales , Insecticidas/farmacología , Diamida , Resistencia a los Insecticidas/genética , Drosophila melanogaster , Uridina Difosfato
16.
Pest Manag Sci ; 78(3): 869-880, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34821007

RESUMEN

BACKGROUND: Resistance to diamide insecticides in Lepidoptera is known to be caused primarily by amino acid changes on the ryanodine receptor (RyR). Recently, two new target site mutations, G4946V and I4790M, have emerged in populations of diamondback moth, Plutella xylostella, as well as in other lepidopteran species, and both mutations have been shown empirically to decrease diamide efficacy. Here, we quantify the impact of the I4790M mutation on diamide activation of the receptor, as compared to alterations at the G4946 locus. RESULTS: I4790M when introduced into P. xylostella RyR expressed in an insect-derived Sf9 cell line was found to mediate just a ten-fold reduction in chlorantraniliprole efficacy (compared to 104- and 146-fold reductions for the G4946E and G4946V variants, respectively), whilst in the field its presence is associated with a ≥150-fold reduction. I4790M-mediated resistance to flubendiamide was estimated to be >24-fold. When the entire coding sequence of P. xylostella RyR was integrated into Drosophila melanogaster, the I4790M variant conferred ~4.4-fold resistance to chlorantraniliprole and 22-fold resistance to flubendiamide in the 3rd instar larvae, confirming that it imparts only a moderate level of resistance to diamide insecticides. Although the I4790M substitution appears to bear no fitness costs in terms of the flies' reproductive capacity, when assessed in a noncompetitive environment, it does, however, have potentially major impacts on mobility at both the larval and adult stages. CONCLUSIONS: I4790M imparts only a moderate level of resistance to diamide insecticides and potentially confers significant fitness costs to the insect.


Asunto(s)
Resistencia a los Insecticidas , Mariposas Nocturnas , Canal Liberador de Calcio Receptor de Rianodina , Animales , Animales Modificados Genéticamente , Línea Celular , Diamida/farmacología , Drosophila melanogaster/genética , Resistencia a los Insecticidas/genética , Mariposas Nocturnas/genética , Mutación , Canal Liberador de Calcio Receptor de Rianodina/genética
17.
Insect Biochem Mol Biol ; 143: 103743, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35202811

RESUMEN

The green peach aphid, Myzus persicae, is a highly damaging, globally distributed crop pest that has evolved multiple resistance to numerous insecticides. It is thus imperative that insecticides that are not strongly compromised by pre-existing resistance are carefully managed to maximise their effective life span. Sulfoxaflor is a sulfoximine insecticide that retains efficacy against M. persicae clones that exhibit resistance to older insecticides. In the current study we monitored the efficacy of sulfoxaflor against M. persicae populations collected in Western Australia, following reports of control failures in this region. We identified clones with low (4-23-fold across multiple independent bioassay experiments), but significant, levels of resistance to sulfoxaflor compared with a reference susceptible clone. Furthermore, we demonstrate that sulfoxaflor resistance can persist after many months of culturing in the laboratory in the absence of insecticide exposure. Resistance was not conferred by known mechanisms of resistance to neonicotinoid insecticides, that act on the same target-site as sulfoxaflor, i.e. the R81T mutation or overexpresssion of the P450 gene CYP6CY3. Rather, transcriptome profiling of multiple resistant and susceptible clones identified the P450 CYP380C40 and the UDP-glucuronosyltransferase UGT344P2 as highly overexpressed (21-76-fold and 6-33-fold respectively) in the resistant clones. Transgenic expression of these genes demonstrated that they confer, low, but significant, levels of resistance to sulfoxaflor in vivo. Taken together, our data reveal the presence of low-level resistance to sulfoxaflor in M. persicae populations in Australia and uncover two novel mechanisms conferring resistance to this compound. The findings and tools generated in this study provide a platform for the development of strategies that aim to slow, prevent or overcome the evolution of more potent resistance to sulfoxaflor.


Asunto(s)
Áfidos , Insecticidas , Animales , Áfidos/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Glucuronosiltransferasa/metabolismo , Resistencia a los Insecticidas/genética , Insecticidas/metabolismo , Insecticidas/farmacología , Piridinas , Compuestos de Azufre , Uridina Difosfato/metabolismo
18.
Pest Manag Sci ; 77(12): 5311-5320, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34270160

RESUMEN

The green peach aphid, Myzus persicae, is a globally distributed highly damaging crop pest. This species has demonstrated an exceptional ability to evolve resistance to both synthetic insecticides used for control, and natural insecticides produced by certain plants as a chemical defense against insect attack. Here we review work characterizing the evolution of resistance in M. persicae to the natural insecticide nicotine and the structurally related class of synthetic neonicotinoid insecticides. We outline how research on this topic has provided insights into long-standing questions of both evolutionary and applied importance. These include questions pertaining to the origins of novel traits, the number and nature of mutational events or 'adaptive steps' underlying the evolution of new phenotypes, and whether host plant adaptations can be co-opted to confer resistance to synthetic insecticides. Finally, research on the molecular mechanisms underlying insecticide resistance in M. persicae has generated several outstanding questions on the genetic architecture of resistance to both natural and synthetic xenobiotics, and we conclude by identifying key knowledge gaps for future research. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Áfidos , Insecticidas , Animales , Áfidos/genética , Resistencia a los Insecticidas/genética , Insecticidas/farmacología , Neonicotinoides , Nicotina
19.
Commun Biol ; 4(1): 847, 2021 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-34234279

RESUMEN

The aphid Myzus persicae is a destructive agricultural pest that displays an exceptional ability to develop resistance to both natural and synthetic insecticides. To investigate the evolution of resistance in this species we generated a chromosome-scale genome assembly and living panel of >110 fully sequenced globally sampled clonal lines. Our analyses reveal a remarkable diversity of resistance mutations segregating in global populations of M. persicae. We show that the emergence and spread of these mechanisms is influenced by host-plant associations, uncovering the widespread co-option of a host-plant adaptation that also offers resistance against synthetic insecticides. We identify both the repeated evolution of independent resistance mutations at the same locus, and multiple instances of the evolution of novel resistance mechanisms against key insecticides. Our findings provide fundamental insights into the genomic responses of global insect populations to strong selective forces, and hold practical relevance for the control of pests and parasites.


Asunto(s)
Áfidos/genética , Evolución Molecular , Variación Genética , Genoma de los Insectos/genética , Resistencia a los Insecticidas/genética , Insecticidas/farmacología , Animales , Áfidos/clasificación , Áfidos/fisiología , Secuencia de Bases , Genómica/métodos , Geografía , Interacciones Huésped-Parásitos/efectos de los fármacos , Mutación , Filogenia , Plantas/parasitología , Polimorfismo de Nucleótido Simple , Homología de Secuencia de Ácido Nucleico
20.
Sci Adv ; 6(19): eaba1070, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32494722

RESUMEN

Host shifts can lead to ecological speciation and the emergence of new pests and pathogens. However, the mutational events that facilitate the exploitation of novel hosts are poorly understood. Here, we characterize an adaptive walk underpinning the host shift of the aphid Myzus persicae to tobacco, including evolution of mechanisms that overcame tobacco chemical defenses. A series of mutational events added as many as 1.5 million nucleotides to the genome of the tobacco-adapted subspecies, M. p. nicotianae, and yielded profound increases in expression of an enzyme that efficiently detoxifies nicotine, both in aphid gut tissue and in the bacteriocytes housing the obligate aphid symbiont Buchnera aphidicola. This dual evolutionary solution overcame the challenge of preserving fitness of a mutualistic symbiosis during adaptation to a toxic novel host. Our results reveal the intricate processes by which genetic novelty can arise and drive the evolution of key innovations required for ecological adaptation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA