Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Cell ; 184(7): 1821-1835.e16, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33667349

RESUMEN

Human monoclonal antibodies are safe, preventive, and therapeutic tools that can be rapidly developed to help restore the massive health and economic disruption caused by the coronavirus disease 2019 (COVID-19) pandemic. By single-cell sorting 4,277 SARS-CoV-2 spike protein-specific memory B cells from 14 COVID-19 survivors, 453 neutralizing antibodies were identified. The most potent neutralizing antibodies recognized the spike protein receptor-binding domain, followed in potency by antibodies that recognize the S1 domain, the spike protein trimer, and the S2 subunit. Only 1.4% of them neutralized the authentic virus with a potency of 1-10 ng/mL. The most potent monoclonal antibody, engineered to reduce the risk of antibody-dependent enhancement and prolong half-life, neutralized the authentic wild-type virus and emerging variants containing D614G, E484K, and N501Y substitutions. Prophylactic and therapeutic efficacy in the hamster model was observed at 0.25 and 4 mg/kg respectively in absence of Fc functions.


Asunto(s)
Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Neutralizantes/administración & dosificación , Anticuerpos Antivirales/administración & dosificación , Linfocitos B/inmunología , COVID-19 , Convalecencia , Células 3T3 , Animales , Anticuerpos Monoclonales/aislamiento & purificación , Anticuerpos Neutralizantes/aislamiento & purificación , Anticuerpos Antivirales/aislamiento & purificación , Linfocitos B/citología , COVID-19/inmunología , COVID-19/prevención & control , COVID-19/terapia , Chlorocebus aethiops , Modelos Animales de Enfermedad , Femenino , Células HEK293 , Humanos , Fragmentos Fc de Inmunoglobulinas/inmunología , Masculino , Ratones , Glicoproteína de la Espiga del Coronavirus/inmunología , Células Vero
2.
Front Microbiol ; 14: 1243427, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37655342

RESUMEN

Neisseria gonorrhoeae (gonococcus) is an obligate human pathogen and the etiological agent of the sexually transmitted disease gonorrhea. The rapid rise in gonococcal resistance to all currently available antimicrobials has become a significant public health burden and the need to develop novel therapeutic and prophylactic tools is now a global priority. While high-throughput screening methods allowed rapid discovery of extremely potent monoclonal antibodies (mAbs) against viral pathogens, the field of bacteriology suffers from the lack of assays that allow efficient screening of large panels of samples. To address this point, we developed luminescence-based (L-ABA) and resazurin-based (R-ABA) antibody bactericidal assays that measure N. gonorrhoeae metabolic activity as a proxy of bacterial viability. Both L-ABA and R-ABA are applicable on the large scale for the rapid identification of bactericidal antibodies and were validated by conventional methods. Implementation of these approaches will be instrumental to the development of new medications and vaccines against N. gonorrhoeae and other bacterial pathogens to support the fight against antimicrobial resistance.

3.
Front Microbiol ; 13: 1080059, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36590399

RESUMEN

Antimicrobial resistance (AMR) is a quickly advancing threat for human health worldwide and almost 5 million deaths are already attributable to this phenomenon every year. Since antibiotics are failing to treat AMR-bacteria, new tools are needed, and human monoclonal antibodies (mAbs) can fill this role. In almost 50 years since the introduction of the first technology that led to mAb discovery, enormous leaps forward have been made to identify and develop extremely potent human mAbs. While their usefulness has been extensively proved against viral pathogens, human mAbs have yet to find their space in treating and preventing infections from AMR-bacteria and fully conquer the field of infectious diseases. The novel and most innovative technologies herein reviewed can support this goal and add powerful tools in the arsenal of weapons against AMR.

4.
Curr Opin Immunol ; 65: 102-106, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-33289646

RESUMEN

Life expectancy has grown tremendously. This incredible achievement for mankind has been obtained mostly thanks to three pillars: hygiene, antibiotics and vaccines. They represent one of the most effective forms of medical intervention. From Jenner's work to new vaccines, immunization has reduced the consequences of infectious diseases. In the last years antimicrobial resistance (AMR) as well as emerging infectious diseases have been rated as major threats for our society, as their toll is forecasted to drastically impinge on human health and economies. Indeed, recently, the whole world has experienced such problems because of the new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of Covid-19. Herein, we propose an excursus through the three main pillars (hygiene, antibiotics and vaccination) that contributed to improving life expectancy, their clinical and economic impact and the role of vaccines to fight AMR-related diseases and emerging infectious diseases like Covid-19.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19/prevención & control , Enfermedades Transmisibles Emergentes/prevención & control , Farmacorresistencia Microbiana , Vacunas , Antibacterianos/uso terapéutico , COVID-19/epidemiología , COVID-19/inmunología , Humanos , Higiene , Pandemias/prevención & control , SARS-CoV-2/inmunología , Vacunación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA