Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 264
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 147(3): 615-28, 2011 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-22036569

RESUMEN

Assemblies of ß-amyloid (Aß) peptides are pathological mediators of Alzheimer's Disease (AD) and are produced by the sequential cleavages of amyloid precursor protein (APP) by ß-secretase (BACE1) and γ-secretase. The generation of Aß is coupled to neuronal activity, but the molecular basis is unknown. Here, we report that the immediate early gene Arc is required for activity-dependent generation of Aß. Arc is a postsynaptic protein that recruits endophilin2/3 and dynamin to early/recycling endosomes that traffic AMPA receptors to reduce synaptic strength in both hebbian and non-hebbian forms of plasticity. The Arc-endosome also traffics APP and BACE1, and Arc physically associates with presenilin1 (PS1) to regulate γ-secretase trafficking and confer activity dependence. Genetic deletion of Arc reduces Aß load in a transgenic mouse model of AD. In concert with the finding that patients with AD can express anomalously high levels of Arc, we hypothesize that Arc participates in the pathogenesis of AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Proteínas del Citoesqueleto/metabolismo , Endosomas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Transporte de Proteínas , Animales , Membrana Celular/metabolismo , Humanos , Ratones , Ratones Noqueados
2.
Mol Cell Proteomics ; 22(1): 100452, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36423813

RESUMEN

Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra (SN) of the brain. Despite decades of studies, the precise pathogenic mechanism of PD is still elusive. An unbiased proteomic analysis of PD patient's brain allows the identification of critical proteins and molecular pathways that lead to dopamine cell death and α-synuclein deposition and the resulting devastating clinical symptoms. In this study, we conducted an in-depth proteome analysis of human SN tissues from 15 PD patients and 15 healthy control individuals combining Orbitrap mass spectrometry with the isobaric tandem mass tag-based multiplexing technology. We identified 10,040 proteins with 1140 differentially expressed proteins in the SN of PD patients. Pathway analysis showed that the ribosome pathway was the most enriched one, followed by gamma-aminobutyric acidergic synapse, retrograde endocannabinoid signaling, cell adhesion molecules, morphine addiction, Prion disease, and PD pathways. Strikingly, the majority of the proteins enriched in the ribosome pathway were mitochondrial ribosomal proteins (mitoribosomes). The subsequent protein-protein interaction analysis and the weighted gene coexpression network analysis confirmed that the mitoribosome is the most enriched protein cluster. Furthermore, the mitoribosome was also identified in our analysis of a replication set of ten PD and nine healthy control SN tissues. This study provides potential disease pathways involved in PD and paves the way to study further the pathogenic mechanism of PD.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/metabolismo , Proteómica/métodos , Sustancia Negra/metabolismo , Encéfalo/metabolismo , Enfermedades Neurodegenerativas/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(15): e2118819119, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35394877

RESUMEN

In idiopathic Parkinson's disease (PD), pathologic αSyn aggregates drive oxidative and nitrative stress that may cause genomic and mitochondrial DNA damage. These events are associated with activation of the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) immune pathway, but it is not known whether STING is activated in or contributes to α-synucleinopathies. Herein, we used primary cell cultures and the intrastriatal αSyn preformed fibril (αSyn-PFF) mouse model of PD to demonstrate that αSyn pathology causes STING-dependent neuroinflammation and dopaminergic neurodegeneration. In microglia-astrocyte cultures, αSyn-PFFs induced DNA double-strand break (DSB) damage response signaling (γH2A.X), as well as TBK1 activation that was blocked by STING inhibition. In the αSyn-PFF mouse model, we similarly observed TBK1 activation and increased γH2A.X within striatal microglia prior to the onset of dopaminergic neurodegeneration. Using STING-deficient (Stinggt) mice, we demonstrated that striatal interferon activation in the α-Syn PFF model is STING-dependent. Furthermore, Stinggt mice were protected from α-Syn PFF-induced motor deficits, pathologic αSyn accumulation, and dopaminergic neuron loss. We also observed upregulation of STING protein in the substantia nigra pars compacta (SNpc) of human PD patients that correlated significantly with pathologic αSyn accumulation. STING was similarly upregulated in microglia cultures treated with αSyn-PFFs, which primed the pathway to mount stronger interferon responses when exposed to a STING agonist. Our results suggest that microglial STING activation contributes to both the neuroinflammation and neurodegeneration arising from α-synucleinopathies, including PD.


Asunto(s)
Interferón Tipo I , Proteínas de la Membrana , Enfermedad de Parkinson , Sinucleinopatías , Animales , Neuronas Dopaminérgicas , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Enfermedades Neurodegenerativas , Enfermedades Neuroinflamatorias , Nucleotidiltransferasas/metabolismo , Transducción de Señal , Sinucleinopatías/genética
4.
Acta Neuropathol ; 147(1): 4, 2023 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-38133681

RESUMEN

LATE-NC, the neuropathologic changes of limbic-predominant age-related TAR DNA-binding protein 43 kDa (TDP-43) encephalopathy are frequently associated with Alzheimer's disease (AD) and cognitive impairment in older adults. The association of TDP-43 proteinopathy with AD neuropathologic changes (ADNC) and its impact on specific cognitive domains are not fully understood and whether loss of TDP-43 function occurs early in the aging brain remains unknown. Here, using a large set of autopsies from the Baltimore Longitudinal Study of Aging (BLSA) and another younger cohort, we were able to study brains from subjects 21-109 years of age. Examination of these brains show that loss of TDP-43 splicing repression, as judged by TDP-43 nuclear clearance and expression of a cryptic exon in HDGFL2, first occurs during the 6th decade, preceding by a decade the appearance of TDP-43+ neuronal cytoplasmic inclusions (NCIs). We corroborated this observation using a monoclonal antibody to demonstrate a cryptic exon-encoded neoepitope within HDGFL2 in neurons exhibiting nuclear clearance of TDP-43. TDP-43 nuclear clearance is associated with increased burden of tau pathology. Age at death, female sex, high CERAD neuritic plaque score, and high Braak neurofibrillary stage significantly increase the odds of LATE-NC. Faster rates of cognitive decline on verbal memory (California Verbal Learning Test immediate recall), visuospatial ability (Card Rotations Test), mental status (MMSE) and semantic fluency (Category Fluency Test) were associated with LATE-NC. Notably, the effects of LATE-NC on verbal memory and visuospatial ability are independent of ADNC. However, the effects of TDP-43 nuclear clearance in absence of NCI on the longitudinal trajectories and levels of cognitive measures are not significant. These results establish that loss of TDP-43 splicing repression is an early event occurring in the aging population during the development of TDP-43 proteinopathy and is associated with increased tau pathology. Furthermore, LATE-NC correlates with high levels of ADNC but also has an impact on specific memory and visuospatial functions in aging that is independent of AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Proteinopatías TDP-43 , Humanos , Femenino , Anciano , Enfermedad de Alzheimer/patología , Estudios Longitudinales , Proteinopatías TDP-43/patología , Envejecimiento/genética , Disfunción Cognitiva/genética , Disfunción Cognitiva/complicaciones , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo
5.
Acta Neuropathol ; 145(2): 159-173, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36512061

RESUMEN

An international consensus report in 2019 recommended a classification system for limbic-predominant age-related TDP-43 encephalopathy neuropathologic changes (LATE-NC). The suggested neuropathologic staging system and nomenclature have proven useful for autopsy practice and dementia research. However, some issues remain unresolved, such as cases with unusual features that do not fit with current diagnostic categories. The goal of this report is to update the neuropathologic criteria for the diagnosis and staging of LATE-NC, based primarily on published data. We provide practical suggestions about how to integrate available genetic information and comorbid pathologies [e.g., Alzheimer's disease neuropathologic changes (ADNC) and Lewy body disease]. We also describe recent research findings that have enabled more precise guidance on how to differentiate LATE-NC from other subtypes of TDP-43 pathology [e.g., frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS)], and how to render diagnoses in unusual situations in which TDP-43 pathology does not follow the staging scheme proposed in 2019. Specific recommendations are also made on when not to apply this diagnostic term based on current knowledge. Neuroanatomical regions of interest in LATE-NC are described in detail and the implications for TDP-43 immunohistochemical results are specified more precisely. We also highlight questions that remain unresolved and areas needing additional study. In summary, the current work lays out a number of recommendations to improve the precision of LATE-NC staging based on published reports and diagnostic experience.


Asunto(s)
Enfermedad de Alzheimer , Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Humanos , Enfermedad de Alzheimer/patología , Demencia Frontotemporal/patología , Esclerosis Amiotrófica Lateral/patología , Proteínas de Unión al ADN/genética
6.
Hum Mol Genet ; 29(8): 1340-1352, 2020 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-32242231

RESUMEN

Nemo-like kinase (NLK), an evolutionarily conserved serine/threonine kinase, is highly expressed in the brain, but its function in the adult brain remains not well understood. In this study, we identify NLK as an interactor of huntingtin protein (HTT). We report that NLK levels are significantly decreased in HD human brain and HD models. Importantly, overexpression of NLK in the striatum attenuates brain atrophy, preserves striatal DARPP32 levels and reduces mutant HTT (mHTT) aggregation in HD mice. In contrast, genetic reduction of NLK exacerbates brain atrophy and loss of DARPP32 in HD mice. Moreover, we demonstrate that NLK lowers mHTT levels in a kinase activity-dependent manner, while having no significant effect on normal HTT protein levels in mouse striatal cells, human cells and HD mouse models. The NLK-mediated lowering of mHTT is associated with enhanced phosphorylation of mHTT. Phosphorylation defective mutation of serine at amino acid 120 (S120) abolishes the mHTT-lowering effect of NLK, suggesting that S120 phosphorylation is an important step in the NLK-mediated lowering of mHTT. A further mechanistic study suggests that NLK promotes mHTT ubiquitination and degradation via the proteasome pathway. Taken together, our results indicate a protective role of NLK in HD and reveal a new molecular target to reduce mHTT levels.


Asunto(s)
Atrofia/genética , Fosfoproteína 32 Regulada por Dopamina y AMPc/genética , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Proteínas Serina-Treonina Quinasas/genética , Animales , Atrofia/patología , Encéfalo/metabolismo , Encéfalo/patología , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Modelos Animales de Enfermedad , Humanos , Enfermedad de Huntington/patología , Ratones , Neostriado/metabolismo , Neostriado/patología , Neuronas/metabolismo , Neuronas/patología , Fosforilación/genética , Complejo de la Endopetidasa Proteasomal/genética
7.
EMBO J ; 37(19)2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30206144

RESUMEN

Spinocerebellar ataxia type 8 (SCA8) is caused by a bidirectionally transcribed CTG·CAG expansion that results in the in vivo accumulation of CUG RNA foci, an ATG-initiated polyGln and a polyAla protein expressed by repeat-associated non-ATG (RAN) translation. Although RAN proteins have been reported in a growing number of diseases, the mechanisms and role of RAN translation in disease are poorly understood. We report a novel toxic SCA8 polySer protein which accumulates in white matter (WM) regions as aggregates that increase with age and disease severity. WM regions with polySer aggregates show demyelination and axonal degeneration in SCA8 human and mouse brains. Additionally, knockdown of the eukaryotic translation initiation factor eIF3F in cells reduces steady-state levels of SCA8 polySer and other RAN proteins. Taken together, these data show polySer and WM abnormalities contribute to SCA8 and identify eIF3F as a novel modulator of RAN protein accumulation.


Asunto(s)
Envejecimiento/metabolismo , Factor 3 de Iniciación Eucariótica/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Degeneraciones Espinocerebelosas/metabolismo , Sustancia Blanca/metabolismo , Envejecimiento/genética , Envejecimiento/patología , Animales , Factor 3 de Iniciación Eucariótica/genética , Células HeLa , Humanos , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Degeneraciones Espinocerebelosas/genética , Degeneraciones Espinocerebelosas/patología , Sustancia Blanca/patología
8.
Acta Neuropathol ; 143(1): 33-53, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34719765

RESUMEN

Primary age-related tauopathy (PART) is a neurodegenerative pathology with features distinct from but also overlapping with Alzheimer disease (AD). While both exhibit Alzheimer-type temporal lobe neurofibrillary degeneration alongside amnestic cognitive impairment, PART develops independently of amyloid-ß (Aß) plaques. The pathogenesis of PART is not known, but evidence suggests an association with genes that promote tau pathology and others that protect from Aß toxicity. Here, we performed a genetic association study in an autopsy cohort of individuals with PART (n = 647) using Braak neurofibrillary tangle stage as a quantitative trait. We found some significant associations with candidate loci associated with AD (SLC24A4, MS4A6A, HS3ST1) and progressive supranuclear palsy (MAPT and EIF2AK3). Genome-wide association analysis revealed a novel significant association with a single nucleotide polymorphism on chromosome 4 (rs56405341) in a locus containing three genes, including JADE1 which was significantly upregulated in tangle-bearing neurons by single-soma RNA-seq. Immunohistochemical studies using antisera targeting JADE1 protein revealed localization within tau aggregates in autopsy brains with four microtubule-binding domain repeats (4R) isoforms and mixed 3R/4R, but not with 3R exclusively. Co-immunoprecipitation in post-mortem human PART brain tissue revealed a specific binding of JADE1 protein to four repeat tau lacking N-terminal inserts (0N4R). Finally, knockdown of the Drosophila JADE1 homolog rhinoceros (rno) enhanced tau-induced toxicity and apoptosis in vivo in a humanized 0N4R mutant tau knock-in model, as quantified by rough eye phenotype and terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL) in the fly brain. Together, these findings indicate that PART has a genetic architecture that partially overlaps with AD and other tauopathies and suggests a novel role for JADE1 as a modifier of neurofibrillary degeneration.


Asunto(s)
Proteínas de Homeodominio/genética , Tauopatías/genética , Tauopatías/patología , Proteínas Supresoras de Tumor/genética , Anciano , Anciano de 80 o más Años , Envejecimiento/patología , Animales , Estudios de Cohortes , Drosophila , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple
9.
Proc Natl Acad Sci U S A ; 116(5): 1686-1691, 2019 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-30635412

RESUMEN

While neuroinflammation is an evolving concept and the cells involved and their functions are being defined, microglia are understood to be a key cellular mediator of brain injury and repair. The ability to measure microglial activity specifically and noninvasively would be a boon to the study of neuroinflammation, which is involved in a wide variety of neuropsychiatric disorders including traumatic brain injury, demyelinating disease, Alzheimer's disease (AD), and Parkinson's disease, among others. We have developed [11C]CPPC [5-cyano-N-(4-(4-[11C]methylpiperazin-1-yl)-2-(piperidin-1-yl)phenyl)furan-2-carboxamide], a positron-emitting, high-affinity ligand that is specific for the macrophage colony-stimulating factor 1 receptor (CSF1R), the expression of which is essentially restricted to microglia within brain. [11C]CPPC demonstrates high and specific brain uptake in a murine and nonhuman primate lipopolysaccharide model of neuroinflammation. It also shows specific and elevated uptake in a murine model of AD, experimental allergic encephalomyelitis murine model of demyelination and in postmortem brain tissue of patients with AD. Radiation dosimetry in mice indicated [11C]CPPC to be safe for future human studies. [11C]CPPC can be synthesized in sufficient radiochemical yield, purity, and specific radioactivity and possesses binding specificity in relevant models that indicate potential for human PET imaging of CSF1R and the microglial component of neuroinflammation.


Asunto(s)
Factor Estimulante de Colonias de Macrófagos/metabolismo , Microglía/metabolismo , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Enfermedad de Alzheimer/metabolismo , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Placa Amiloide/metabolismo , Tomografía de Emisión de Positrones/métodos , Primates , Radiofármacos/metabolismo
10.
Alzheimers Dement ; 18(2): 205-210, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34057798

RESUMEN

Degradation and clearance of amyloid beta (Aß) peptide are likely critical for brain health. Animal studies have demonstrated the role of the glial-lymphatic (glymphatic) system in the clearance of Aß and other brain metabolites, but no such information has been available in humans. Here we ask whether this system contributes to the clearance of Aß from the human brain. In the absence of an applicable imaging method, we examined cervical and inguinal lymph nodes resected for cancer therapy or staging using immunohistochemistry. Aß-labeled cells were present in lymph nodes, and cervical lymph nodes showed labeled cells in far greater abundance than did inguinal nodes. This observation supports the hypothesis that the glymphatic system contributes to the clearance of Aß from the human brain.


Asunto(s)
Enfermedad de Alzheimer , Sistema Glinfático , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Encéfalo/patología , Sistema Glinfático/metabolismo , Sistema Glinfático/patología , Humanos , Ganglios Linfáticos/metabolismo , Ganglios Linfáticos/patología
11.
J Neurochem ; 156(6): 988-1002, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32614981

RESUMEN

Alzheimer's disease (AD) is a chronic neurodegenerative disease characterized by intracellular formation of neurofibrillary tangles and extracellular deposition of ß-amyloid protein (Aß) in the extracellular matrix. The pathogenesis of AD has not yet been fully elucidated and little is known about global alterations in the brain proteome that are related to AD. To identify and quantify such AD-related changes in the brain, we employed a tandem mass tags approach coupled to high-resolution mass spectrometry. We compared the proteomes of frontal cortex from AD patients with corresponding age-matched brain samples. Liquid chromatography-mass spectrometry/MS analysis carried out on an Orbitrap Fusion Lumos Tribrid mass spectrometer led to identification of 8,066 proteins. Of these, 432 proteins were observed to be significantly altered (>1.5 fold) in their expression in AD brains. Proteins whose abundance was previously known to be altered in AD were identified including secreted phosphoprotein 1 (SPP1), somatostatin (SST), SPARC-related modular calcium binding 1 (SMOC1), dual specificity phosphatase 26 (DUSP26), and neuronal pentraxin 2 (NPTX2). In addition, we identified several novel candidates whose association with AD has not been previously described. Of the novel molecules, we validated chromogranin A (CHGA), inner membrane mitochondrial protein (IMMT) and RAS like proto-oncogene A (RALA) in an additional set of 20 independent brain samples using targeted parallel reaction monitoring mass spectrometry assays. The differentially expressed proteins discovered in our study, once validated in larger cohorts, should help discern the pathogenesis of AD.


Asunto(s)
Enfermedad de Alzheimer/genética , Corteza Prefrontal/metabolismo , Proteómica , Anciano de 80 o más Años , Enfermedad de Alzheimer/patología , Autopsia , Encéfalo/patología , Cromatografía Líquida de Alta Presión , Biología Computacional , Femenino , Regulación de la Expresión Génica , Humanos , Estudios Longitudinales , Masculino , Ovillos Neurofibrilares , Corteza Prefrontal/patología , Proto-Oncogenes Mas , Espectrometría de Masas en Tándem , Tripsina/química
12.
PLoS Med ; 18(5): e1003615, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34043628

RESUMEN

BACKGROUND: While Alzheimer disease (AD) and vascular dementia (VaD) may be accelerated by hypercholesterolemia, the mechanisms underlying this association are unclear. We tested whether dysregulation of cholesterol catabolism, through its conversion to primary bile acids (BAs), was associated with dementia pathogenesis. METHODS AND FINDINGS: We used a 3-step study design to examine the role of the primary BAs, cholic acid (CA), and chenodeoxycholic acid (CDCA) as well as their principal biosynthetic precursor, 7α-hydroxycholesterol (7α-OHC), in dementia. In Step 1, we tested whether serum markers of cholesterol catabolism were associated with brain amyloid accumulation, white matter lesions (WMLs), and brain atrophy. In Step 2, we tested whether exposure to bile acid sequestrants (BAS) was associated with risk of dementia. In Step 3, we examined plausible mechanisms underlying these findings by testing whether brain levels of primary BAs and gene expression of their principal receptors are altered in AD. Step 1: We assayed serum concentrations CA, CDCA, and 7α-OHC and used linear regression and mixed effects models to test their associations with brain amyloid accumulation (N = 141), WMLs, and brain atrophy (N = 134) in the Baltimore Longitudinal Study of Aging (BLSA). The BLSA is an ongoing, community-based cohort study that began in 1958. Participants in the BLSA neuroimaging sample were approximately 46% male with a mean age of 76 years; longitudinal analyses included an average of 2.5 follow-up magnetic resonance imaging (MRI) visits. We used the Alzheimer's Disease Neuroimaging Initiative (ADNI) (N = 1,666) to validate longitudinal neuroimaging results in BLSA. ADNI is an ongoing, community-based cohort study that began in 2003. Participants were approximately 55% male with a mean age of 74 years; longitudinal analyses included an average of 5.2 follow-up MRI visits. Lower serum concentrations of 7α-OHC, CA, and CDCA were associated with higher brain amyloid deposition (p = 0.041), faster WML accumulation (p = 0.050), and faster brain atrophy mainly (false discovery rate [FDR] p = <0.001-0.013) in males in BLSA. In ADNI, we found a modest sex-specific effect indicating that lower serum concentrations of CA and CDCA were associated with faster brain atrophy (FDR p = 0.049) in males.Step 2: In the Clinical Practice Research Datalink (CPRD) dataset, covering >4 million registrants from general practice clinics in the United Kingdom, we tested whether patients using BAS (BAS users; 3,208 with ≥2 prescriptions), which reduce circulating BAs and increase cholesterol catabolism, had altered dementia risk compared to those on non-statin lipid-modifying therapies (LMT users; 23,483 with ≥2 prescriptions). Patients in the study (BAS/LMT) were approximately 34%/38% male and with a mean age of 65/68 years; follow-up time was 4.7/5.7 years. We found that BAS use was not significantly associated with risk of all-cause dementia (hazard ratio (HR) = 1.03, 95% confidence interval (CI) = 0.72-1.46, p = 0.88) or its subtypes. We found a significant difference between the risk of VaD in males compared to females (p = 0.040) and a significant dose-response relationship between BAS use and risk of VaD (p-trend = 0.045) in males.Step 3: We assayed brain tissue concentrations of CA and CDCA comparing AD and control (CON) samples in the BLSA autopsy cohort (N = 29). Participants in the BLSA autopsy cohort (AD/CON) were approximately 50%/77% male with a mean age of 87/82 years. We analyzed single-cell RNA sequencing (scRNA-Seq) data to compare brain BA receptor gene expression between AD and CON samples from the Religious Orders Study and Memory and Aging Project (ROSMAP) cohort (N = 46). ROSMAP is an ongoing, community-based cohort study that began in 1994. Participants (AD/CON) were approximately 56%/36% male with a mean age of 85/85 years. In BLSA, we found that CA and CDCA were detectable in postmortem brain tissue samples and were marginally higher in AD samples compared to CON. In ROSMAP, we found sex-specific differences in altered neuronal gene expression of BA receptors in AD. Study limitations include the small sample sizes in the BLSA cohort and likely inaccuracies in the clinical diagnosis of dementia subtypes in primary care settings. CONCLUSIONS: We combined targeted metabolomics in serum and amyloid positron emission tomography (PET) and MRI of the brain with pharmacoepidemiologic analysis to implicate dysregulation of cholesterol catabolism in dementia pathogenesis. We observed that lower serum BA concentration mainly in males is associated with neuroimaging markers of dementia, and pharmacological lowering of BA levels may be associated with higher risk of VaD in males. We hypothesize that dysregulation of BA signaling pathways in the brain may represent a plausible biologic mechanism underlying these results. Together, our observations suggest a novel mechanism relating abnormalities in cholesterol catabolism to risk of dementia.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Demencia/epidemiología , Anciano , Anciano de 80 o más Años , Ácidos y Sales Biliares/biosíntesis , Demencia/metabolismo , Femenino , Perfilación de la Expresión Génica , Humanos , Incidencia , Masculino , Metabolómica , Persona de Mediana Edad , Farmacoepidemiología , Reino Unido/epidemiología
13.
Genome Res ; 28(1): 25-36, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29162641

RESUMEN

Translation initiation generally occurs at AUG codons in eukaryotes, although it has been shown that non-AUG or noncanonical translation initiation can also occur. However, the evidence for noncanonical translation initiation sites (TISs) is largely indirect and based on ribosome profiling (Ribo-seq) studies. Here, using a strategy specifically designed to enrich N termini of proteins, we demonstrate that many human proteins are translated at noncanonical TISs. The large majority of TISs that mapped to 5' untranslated regions were noncanonical and led to N-terminal extension of annotated proteins or translation of upstream small open reading frames (uORF). It has been controversial whether the amino acid corresponding to the start codon is incorporated at the TIS or methionine is still incorporated. We found that methionine was incorporated at almost all noncanonical TISs identified in this study. Comparison of the TISs determined through mass spectrometry with ribosome profiling data revealed that about two-thirds of the novel annotations were indeed supported by the available ribosome profiling data. Sequence conservation across species and a higher abundance of noncanonical TISs than canonical ones in some cases suggests that the noncanonical TISs can have biological functions. Overall, this study provides evidence of protein translation initiation at noncanonical TISs and argues that further studies are required for elucidation of functional implications of such noncanonical translation initiation.


Asunto(s)
Regiones no Traducidas 5' , Espectrometría de Masas , Sistemas de Lectura Abierta , Iniciación de la Cadena Peptídica Traduccional , Ribosomas/metabolismo , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Dominios Proteicos , Ribosomas/genética
14.
Am J Geriatr Psychiatry ; 29(9): 958-968, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33455856

RESUMEN

BACKGROUND: The pathological hallmarks of Parkinson's disease include intraneuronal Lewy bodies, neuronal loss, and gliosis. We aim to correlate Parkinson's disease neuropsychiatric symptoms, (e.g., depression, psychosis, and anxiety) with the severity of neuropathology in the substantia nigra and locus coeruleus. METHODS: The brains of 175 participants with a primary pathologic diagnosis of Parkinson's disease were analyzed semi-quantitatively to ascertain the burden of neuronal loss and gliosis and Lewy body pathology within the locus coeruleus and substantia nigra. Participants' history of anxiety, depression, and psychosis were determined using a chart-extracted medical history or record of formal psychiatric evaluation. RESULTS: Of the sample, 56% (n = 98), 50% (n = 88), and 31.25% (n = 55) of subjects had a diagnosis of psychosis, depression, and anxiety, respectively. Psychosis (χ2 = 7.1, p = 0.008, df = 1) and depression (χ2 = 7.2, p = 0.007, df = 1) were associated with severe neuronal loss and gliosis in the substantia nigra but not in the locus coeruleus. No association was observed between anxiety and neuronal loss and gliosis in either region. No neuropsychiatric symptoms were associated with Lewy body score. After controlling for disease duration and dementia, psychosis (odds ratio [OR]: 3.1, 95% confidence interval [CI]: 1.5-6.4, χ2 = 9.4, p = 0.012, df = 1) and depression (OR: 2.6, 95% CI: 1.3-5.0, χ2 = 7.9, p = 0.005, df = 1) remained associated with severe neuronal loss and gliosis in the substantia nigra. CONCLUSION: These results suggest that psychosis and depression in Parkinson's disease are associated with the underlying neurodegenerative process and demonstrate that cell loss and gliosis may be a better marker of neuropsychiatric symptoms than Lewy body pathology.


Asunto(s)
Enfermedad de Parkinson , Trastornos Psicóticos , Tronco Encefálico , Depresión/complicaciones , Humanos , Cuerpos de Lewy , Enfermedad de Parkinson/complicaciones , Trastornos Psicóticos/complicaciones
15.
J Surg Res ; 260: 177-189, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33348169

RESUMEN

BACKGROUND: Hypothermic circulatory arrest (HCA) is associated with neurologic morbidity, in part mediated by activation of the N-methyl-D-aspartate glutamate receptor causing excitotoxicity and neuronal apoptosis. Using a canine model, we hypothesized that the N-methyl-D-aspartate receptor antagonist MK801 would provide neuroprotection and that MK801 conjugation to dendrimer nanoparticles would improve efficacy. MATERIALS AND METHODS: Male hound dogs were placed on cardiopulmonary bypass, cooled to 18°C, and underwent 90 min of HCA. Dendrimer conjugates (d-MK801) were prepared by covalently linking dendrimer surface OH groups to MK801. Six experimental groups received either saline (control), medium- (0.15 mg/kg) or high-dose (1.56 mg/kg) MK801, or low- (0.05 mg/kg), medium-, or high-dose d-MK801. At 24, 48, and 72 h after HCA, animals were scored by a standardized neurobehavioral paradigm (higher scores indicate increasing deficits). Cerebrospinal fluid was obtained at baseline, eight, 24, 48, and 72 h after HCA. At 72 h, brains were examined for histopathologic injury in a blinded manner (higher scores indicate more injury). RESULTS: Neurobehavioral deficit scores were reduced by low-dose d-MK801 on postoperative day two (P < 0.05) and by medium-dose d-MK801 on postoperative day 3 (P = 0.05) compared with saline controls, but free drug had no effect. In contrast, high-dose free MK801 significantly improved histopathology scores compared with saline (P < 0.05) and altered biomarkers of injury in cerebrospinal fluid, with a significant reduction in phosphorylated neurofilament-H for high-dose MK801 versus saline (P < 0.05). CONCLUSIONS: Treatment with MK-801 demonstrated significant improvement in neurobehavioral and histopathology scores after HCA, although not consistently across doses and conjugates.


Asunto(s)
Paro Circulatorio Inducido por Hipotermia Profunda/efectos adversos , Maleato de Dizocilpina/farmacología , Fármacos Neuroprotectores/farmacología , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Animales , Encéfalo/patología , Cognición , Perros , Masculino
16.
Brain ; 143(1): 234-248, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31755958

RESUMEN

Parkinson's disease is a genetically complex disorder. Multiple genes have been shown to contribute to the risk of Parkinson's disease, and currently 90 independent risk variants have been identified by genome-wide association studies. Thus far, a number of genes (including SNCA, LRRK2, and GBA) have been shown to contain variability across a spectrum of frequency and effect, from rare, highly penetrant variants to common risk alleles with small effect sizes. Variants in GBA, encoding the enzyme glucocerebrosidase, are associated with Lewy body diseases such as Parkinson's disease and Lewy body dementia. These variants, which reduce or abolish enzymatic activity, confer a spectrum of disease risk, from 1.4- to >10-fold. An outstanding question in the field is what other genetic factors that influence GBA-associated risk for disease, and whether these overlap with known Parkinson's disease risk variants. Using multiple, large case-control datasets, totalling 217 165 individuals (22 757 Parkinson's disease cases, 13 431 Parkinson's disease proxy cases, 622 Lewy body dementia cases and 180 355 controls), we identified 1691 Parkinson's disease cases, 81 Lewy body dementia cases, 711 proxy cases and 7624 controls with a GBA variant (p.E326K, p.T369M or p.N370S). We performed a genome-wide association study and analysed the most recent Parkinson's disease-associated genetic risk score to detect genetic influences on GBA risk and age at onset. We attempted to replicate our findings in two independent datasets, including the personal genetics company 23andMe, Inc. and whole-genome sequencing data. Our analysis showed that the overall Parkinson's disease genetic risk score modifies risk for disease and decreases age at onset in carriers of GBA variants. Notably, this effect was consistent across all tested GBA risk variants. Dissecting this signal demonstrated that variants in close proximity to SNCA and CTSB (encoding cathepsin B) are the most significant contributors. Risk variants in the CTSB locus were identified to decrease mRNA expression of CTSB. Additional analyses suggest a possible genetic interaction between GBA and CTSB and GBA p.N370S induced pluripotent cell-derived neurons were shown to have decreased cathepsin B expression compared to controls. These data provide a genetic basis for modification of GBA-associated Parkinson's disease risk and age at onset, although the total contribution of common genetics variants is not large. We further demonstrate that common variability at genes implicated in lysosomal function exerts the largest effect on GBA associated risk for disease. Further, these results have implications for selection of GBA carriers for therapeutic interventions.


Asunto(s)
Catepsina B/genética , Glucosilceramidasa/genética , Enfermedad por Cuerpos de Lewy/genética , Enfermedad de Parkinson/genética , Penetrancia , alfa-Sinucleína/genética , Edad de Inicio , Estudios de Casos y Controles , Catepsina B/metabolismo , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Genotipo , Glucosilceramidasa/metabolismo , Humanos , Células Madre Pluripotentes Inducidas , Enfermedad por Cuerpos de Lewy/metabolismo , Neurogénesis/genética , Neuronas/metabolismo , Enfermedad de Parkinson/metabolismo , Polimorfismo de Nucleótido Simple , ARN Mensajero/metabolismo , Factores de Riesgo , Secuenciación Completa del Genoma , alfa-Sinucleína/metabolismo
18.
PLoS Med ; 17(1): e1003012, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31978055

RESUMEN

BACKGROUND: There is growing evidence that Alzheimer disease (AD) is a pervasive metabolic disorder with dysregulation in multiple biochemical pathways underlying its pathogenesis. Understanding how perturbations in metabolism are related to AD is critical to identifying novel targets for disease-modifying therapies. In this study, we test whether AD pathogenesis is associated with dysregulation in brain transmethylation and polyamine pathways. METHODS AND FINDINGS: We first performed targeted and quantitative metabolomics assays using capillary electrophoresis-mass spectrometry (CE-MS) on brain samples from three groups in the Baltimore Longitudinal Study of Aging (BLSA) (AD: n = 17; Asymptomatic AD [ASY]: n = 13; Control [CN]: n = 13) (overall 37.2% female; mean age at death 86.118 ± 9.842 years) in regions both vulnerable and resistant to AD pathology. Using linear mixed-effects models within two primary brain regions (inferior temporal gyrus [ITG] and middle frontal gyrus [MFG]), we tested associations between brain tissue concentrations of 26 metabolites and the following primary outcomes: group differences, Consortium to Establish a Registry for Alzheimer's Disease (CERAD) (neuritic plaque burden), and Braak (neurofibrillary pathology) scores. We found significant alterations in concentrations of metabolites in AD relative to CN samples, as well as associations with severity of both CERAD and Braak, mainly in the ITG. These metabolites represented biochemical reactions in the (1) methionine cycle (choline: lower in AD, p = 0.003; S-adenosyl methionine: higher in AD, p = 0.005); (2) transsulfuration and glutathione synthesis (cysteine: higher in AD, p < 0.001; reduced glutathione [GSH]: higher in AD, p < 0.001); (3) polyamine synthesis/catabolism (spermidine: higher in AD, p = 0.004); (4) urea cycle (N-acetyl glutamate: lower in AD, p < 0.001); (5) glutamate-aspartate metabolism (N-acetyl aspartate: lower in AD, p = 0.002); and (6) neurotransmitter metabolism (gamma-amino-butyric acid: lower in AD, p < 0.001). Utilizing three Gene Expression Omnibus (GEO) datasets, we then examined mRNA expression levels of 71 genes encoding enzymes regulating key reactions within these pathways in the entorhinal cortex (ERC; AD: n = 25; CN: n = 52) and hippocampus (AD: n = 29; CN: n = 56). Complementing our metabolomics results, our transcriptomics analyses also revealed significant alterations in gene expression levels of key enzymatic regulators of biochemical reactions linked to transmethylation and polyamine metabolism. Our study has limitations: our metabolomics assays measured only a small proportion of all metabolites participating in the pathways we examined. Our study is also cross-sectional, limiting our ability to directly test how AD progression may impact changes in metabolite concentrations or differential-gene expression. Additionally, the relatively small number of brain tissue samples may have limited our power to detect alterations in all pathway-specific metabolites and their genetic regulators. CONCLUSIONS: In this study, we observed broad dysregulation of transmethylation and polyamine synthesis/catabolism, including abnormalities in neurotransmitter signaling, urea cycle, aspartate-glutamate metabolism, and glutathione synthesis. Our results implicate alterations in cellular methylation potential and increased flux in the transmethylation pathways, increased demand on antioxidant defense mechanisms, perturbations in intermediate metabolism in the urea cycle and aspartate-glutamate pathways disrupting mitochondrial bioenergetics, increased polyamine biosynthesis and breakdown, as well as abnormalities in neurotransmitter metabolism that are related to AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Redes y Vías Metabólicas/fisiología , Metaboloma/fisiología , Poliaminas/metabolismo , Transcriptoma/fisiología , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Encéfalo/patología , Femenino , Humanos , Estudios Longitudinales , Masculino , Metilación
19.
Nature ; 507(7491): 195-200, 2014 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-24598541

RESUMEN

A hexanucleotide repeat expansion (HRE), (GGGGCC)n, in C9orf72 is the most common genetic cause of the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here we identify a molecular mechanism by which structural polymorphism of the HRE leads to ALS/FTD pathology and defects. The HRE forms DNA and RNA G-quadruplexes with distinct structures and promotes RNA•DNA hybrids (R-loops). The structural polymorphism causes a repeat-length-dependent accumulation of transcripts aborted in the HRE region. These transcribed repeats bind to ribonucleoproteins in a conformation-dependent manner. Specifically, nucleolin, an essential nucleolar protein, preferentially binds the HRE G-quadruplex, and patient cells show evidence of nucleolar stress. Our results demonstrate that distinct C9orf72 HRE structural polymorphism at both DNA and RNA levels initiates molecular cascades leading to ALS/FTD pathologies, and provide the basis for a mechanistic model for repeat-associated neurodegenerative diseases.


Asunto(s)
Expansión de las Repeticiones de ADN/genética , Sistemas de Lectura Abierta/genética , Esclerosis Amiotrófica Lateral/genética , Linfocitos B , Secuencia de Bases , Nucléolo Celular/genética , Nucléolo Celular/patología , ADN/genética , ADN/metabolismo , Demencia Frontotemporal/genética , G-Cuádruplex , Células HEK293 , Humanos , Modelos Moleculares , Neuronas , Fosfoproteínas/metabolismo , ARN/biosíntesis , ARN/química , ARN/genética , ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteínas/metabolismo , Estrés Fisiológico , Transcripción Genética/genética , Nucleolina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA