Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Neurosci ; 35(7): 3218-29, 2015 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-25698756

RESUMEN

Autism spectrum disorder (ASD) is increasingly thought to result from low-level deficits in synaptic development and neural circuit formation that cascade into more complex cognitive symptoms. However, the link between synaptic dysfunction and behavior is not well understood. By comparing the effects of abnormal circuit formation and behavioral outcomes across different species, it should be possible to pinpoint the conserved fundamental processes that result in disease. Here we use a novel model for neurodevelopmental disorders in which we expose Xenopus laevis tadpoles to valproic acid (VPA) during a critical time point in brain development at which neurogenesis and neural circuit formation required for sensory processing are occurring. VPA is a commonly prescribed antiepileptic drug with known teratogenic effects. In utero exposure to VPA in humans or rodents results in a higher incidence of ASD or ASD-like behavior later in life. We find that tadpoles exposed to VPA have abnormal sensorimotor and schooling behavior that is accompanied by hyperconnected neural networks in the optic tectum, increased excitatory and inhibitory synaptic drive, elevated levels of spontaneous synaptic activity, and decreased neuronal intrinsic excitability. Consistent with these findings, VPA-treated tadpoles also have increased seizure susceptibility and decreased acoustic startle habituation. These findings indicate that the effects of VPA are remarkably conserved across vertebrate species and that changes in neural circuitry resulting from abnormal developmental pruning can cascade into higher-level behavioral deficits.


Asunto(s)
Anticonvulsivantes/efectos adversos , Discapacidades del Desarrollo/inducido químicamente , Ácido Valproico/efectos adversos , Animales , Animales Modificados Genéticamente , Reacción de Prevención/efectos de los fármacos , Convulsivantes/toxicidad , Dendritas/efectos de los fármacos , Dendritas/patología , Discapacidades del Desarrollo/fisiopatología , Modelos Animales de Enfermedad , Reacción de Fuga/efectos de los fármacos , Agonistas de Aminoácidos Excitadores/farmacología , Habituación Psicofisiológica/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/fisiología , Pentilenotetrazol/toxicidad , Reflejo de Sobresalto/efectos de los fármacos , Células Ganglionares de la Retina/patología , Células Ganglionares de la Retina/fisiología , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico , Convulsiones/patología , Colículos Superiores/efectos de los fármacos , Colículos Superiores/patología , Trastornos de la Visión/etiología , Xenopus laevis
2.
Chem Senses ; 40(5): 345-50, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25917509

RESUMEN

Fragile X syndrome (FXS) is the most common cause of inherited intellectual disability and is characterized by cognitive impairments and altered sensory function. It is caused by absence of fragile X mental retardation protein (FMRP), an RNA-binding protein essential for normal synaptic plasticity and function. Animal models have provided important insights into mechanisms through which loss of FMRP impacts cognitive and sensory development and function. While FMRP is highly enriched in the developing and adult olfactory bulb (OB), its role in olfactory sensory function remains poorly understood. Here, we used a mouse model of FXS, the fmr1 (-/y) mouse, to test whether loss of FMRP impacts olfactory discrimination, habituation, or sensitivity using a spontaneous olfactory cross-habituation task at a range of odorant concentrations. We demonstrated that fmr1 (-/y) mice have a significant decrease in olfactory sensitivity compared with wild type controls. When we controlled for differences in sensitivity, we found no effect of loss of FMRP on the ability to habituate to or spontaneously discriminate between odorants. These data indicate that loss of FMRP significantly alters olfactory sensitivity, but not other facets of basal olfactory function. These findings have important implications for future studies aimed at understanding the role of FMRP on sensory functioning.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Odorantes , Vías Olfatorias/metabolismo , Percepción Olfatoria/fisiología , Animales , Modelos Animales de Enfermedad , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Eliminación de Gen , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
3.
Neural Dev ; 11(1): 14, 2016 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-27503008

RESUMEN

BACKGROUND: Fragile X Syndrome is the leading monogenetic cause of autism and most common form of intellectual disability. Previous studies have implicated changes in dendritic spine architecture as the primary result of loss of Fragile X Mental Retardation Protein (FMRP), but recent work has shown that neural proliferation is decreased and cell death is increased with either loss of FMRP or overexpression of FMRP. The purpose of this study was to investigate the effects of loss of FMRP on behavior and cellular activity. METHODS: We knocked down FMRP expression using morpholino oligos in the optic tectum of Xenopus laevis tadpoles and performed a series of behavioral and electrophysiological assays. We investigated visually guided collision avoidance, schooling, and seizure propensity. Using single cell electrophysiology, we assessed intrinsic excitability and synaptic connectivity of tectal neurons. RESULTS: We found that FMRP knockdown results in decreased swimming speed, reduced schooling behavior and decreased seizure severity. In single cells, we found increased inhibition relative to excitation in response to sensory input. CONCLUSIONS: Our results indicate that the electrophysiological development of single cells in the absence of FMRP is largely unaffected despite the large neural proliferation defect. The changes in behavior are consistent with an increase in inhibition, which could be due to either changes in cell number or altered inhibitory drive, and indicate that FMRP can play a significant role in neural development much earlier than previously thought.


Asunto(s)
Conducta Animal , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/fisiología , Síndrome del Cromosoma X Frágil/fisiopatología , Inhibición Neural , Neuronas/fisiología , Colículos Superiores/fisiología , Animales , Reacción de Fuga/fisiología , Potenciales Postsinápticos Excitadores , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Técnicas de Silenciamiento del Gen , Potenciales de la Membrana , Neuronas/metabolismo , Convulsiones/genética , Colículos Superiores/metabolismo , Natación/fisiología , Xenopus laevis
4.
Curr Biol ; 25(23): R1132-3, 2015 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-26654372

RESUMEN

Neural homeostasis allows neural networks to maintain a dynamic range around a given set point. How this set point is determined remains unknown. New evidence shows that alterations of activity during a critical developmental period can alter the homeostatic set point, resulting in epilepsy-like activity.


Asunto(s)
Homeostasis , Neurobiología , Epilepsia , Humanos , Redes Neurales de la Computación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA