Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Biol Psychiatry ; 62(11): 1295-302, 2007 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-17628506

RESUMEN

BACKGROUND: Glycogen synthase kinase 3-beta (GSK3B) is a serine/threonine kinase which is directly inhibited by lithium. A -50T/C single nucleotide polymorphism (SNP) localized within the promoter region of the GSK3B gene has previously been shown to be associated with response to lithium prophylaxis in bipolar disorder. This study investigates the association of the GSK3B -50T/C SNP and response to lithium augmentation in acutely depressed antidepressant nonresponders. METHODS: Eighty-one patients who had not responded to at least one adequate trial of antidepressant monotherapy underwent a standardized trial of lithium augmentation for up to 8 weeks. We genotyped for the GSK3B -50T/C SNP using polymerase chain reaction and restriction fragment length polymorphism methods and investigated the association with remission. RESULTS: The allele frequencies in our sample were CC 14.8%, CT 48.2% and TT 37% (no deviation from the Hardy-Weinberg equilibrium). Carriers of the C-allele of the -50T/C SNP showed a significantly better response to lithium augmentation (hazard ratio: 2.70, p = .007), with a mean remission rate of 56.25% after 4 weeks compared to 31% in patients with the TT-genotype (chi(2) = 4.1; p = .04). CONCLUSIONS: Our results support the finding of recent studies demonstrating a superior response of C-allele carriers with bipolar disorder to lithium prophylaxis.


Asunto(s)
Antidepresivos/uso terapéutico , Antimaníacos/uso terapéutico , Trastorno Depresivo/tratamiento farmacológico , Trastorno Depresivo/genética , Glucógeno Sintasa Quinasa 3/genética , Cloruro de Litio/uso terapéutico , Adulto , Resistencia a Medicamentos , Quimioterapia Combinada , Femenino , Genotipo , Glucógeno Sintasa Quinasa 3 beta , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Longitud del Fragmento de Restricción , Polimorfismo de Nucleótido Simple , Escalas de Valoración Psiquiátrica , Análisis de Regresión , Análisis de Supervivencia
2.
Clin Pharmacol Ther ; 80(6): 657-67, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17178266

RESUMEN

OBJECTIVES: Rosiglitazone is metabolically inactivated predominantly via the cytochrome P450 (CYP) enzyme CYP2C8. The functional impact of the CYP2C8*3 allele coding for the Arg139Lys and Lys399Arg amino acid substitutions is controversial. The purpose of this was to clarify the role of this polymorphism with regard to the pharmacokinetics and clinical effects of rosiglitazone. METHODS: From a large sample of healthy volunteers, 14 carriers of the CYP2C8*1/*1 allele, 13 carriers of the *1/*3 allele, and 4 carriers the *3/*3 allele were selected for a clinical study. Rosiglitazone (8 mg) single-dose and multiple-dose pharmacokinetics and its effects on glucose level and body weight were monitored. Plasma and urine concentrations of rosiglitazone and desmethylrosiglitazone were measured, and kinetics was analyzed by noncompartmental and population-kinetic compartmental methods. RESULTS: Mean total clearance values were 0.033 L x h(-1) x kg(-1) (95% confidence interval [CI], 0.030-0.037 L x h(-1) x kg(-1)), 0.038 L x h(-1) x kg(-1) (95% CI, 0.033-0.044 L x h(-1) x kg(-1)), and 0.046 L x h(-1) x kg(-1) (95% CI, 0.033-0.058 L x h(-1) x kg(-1)) in carriers of CYP2C8 genotypes *1/*1, *1/*3, and *3/*3, respectively, on day 1 (P = .02, ANOVA [F test]). Rosiglitazone kinetics could be adequately described by a 1-compartmental model with first-order absorption. Besides CYP2C8 genotype, body weight was a significant covariate (P < .001, log-likelihood ratio test). Elimination half-lives were 4.3, 3.5, and 2.9 hours in CYP2C8*1/*1, *1/*3, and *3/*3 carriers, respectively. Clearance of desmethylrosiglitazone was also higher in CYP2C8*3 allele carriers, with mean values of 1.96 L/h (95% CI, 1.42-2.69 L/h), 2.22 L/h (95% CI, 1.61-3.04 L/h), and 2.47 L/h (95% CI, 1.80-3.39 L/h), respectively (P = .03). The plasma glucose area under the concentration curve was significantly lower after 14 days of taking rosiglitazone compared with day 1 (P = .01, paired t test), but no relationship of the glucose-lowering effect of rosiglitazone with CYP2C8 genotype was observed. CONCLUSIONS: This study showed that the CYP2C8*3 allele confers higher in vivo metabolic capacity than the wild-type CYP2C8*1 allele but the pharmacokinetic differences resulting from CYP2C8*3 were quantitatively moderate.


Asunto(s)
Hidrocarburo de Aril Hidroxilasas/genética , Tiazolidinedionas/farmacocinética , Alelos , Área Bajo la Curva , Glucemia/efectos de los fármacos , Citocromo P-450 CYP2C8 , Femenino , Genotipo , Heterocigoto , Humanos , Masculino , Tasa de Depuración Metabólica , Farmacogenética , Rosiglitazona , Tiazolidinedionas/metabolismo , Tiazolidinedionas/farmacología
3.
FASEB J ; 16(9): 935-42, 2002 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12087054

RESUMEN

Telomere shortening limits the number of cell divisions of primary human cells and might affect the regenerative capacity of organ systems during aging and chronic disease. To test whether the telomere hypothesis applies to human cirrhosis, the telomere length was monitored in cirrhosis induced by a broad variety of different etiologies. Telomeres were significantly shorter in cirrhosis compared with noncirrhotic samples independent of the primary etiology and independent of the age of the patients. Quantitative fluorescence in situ hybridization showed that telomere shortening was restricted to hepatocytes whereas lymphocytes and stellate cells in areas of fibrosis had significantly longer telomere reserves. Hepatocyte-specific telomere shortening correlated with senescence-associated beta-galactosidase staining in 84% of the cirrhosis samples, specifically in hepatocytes, but not in stellate cells or lymphocytes. Hepatocyte telomere shortening and senescence correlated with progression of fibrosis in cirrhosis samples. This study demonstrates for the first time that cell type-specific telomere shortening and senescence are linked to progression of human cirrhosis. These findings give a novel explanation for the pathophysiology of cirrhosis, indicating that fibrotic scarring at the cirrhosis stage is a consequence of hepatocyte telomere shortening and senescence. The data imply that future therapies aiming to restore regenerative capacity during aging and chronic diseases will have to ensure efficient targeting of specific cell types within the affected organs.


Asunto(s)
Hepatocitos/ultraestructura , Cirrosis Hepática/patología , Telómero/ultraestructura , Adolescente , Adulto , Factores de Edad , Anciano , Biomarcadores/análisis , Senescencia Celular , Niño , Progresión de la Enfermedad , Hepatocitos/patología , Humanos , Cirrosis Hepática/enzimología , Cirrosis Hepática/genética , Persona de Mediana Edad , Modelos Biológicos , beta-Galactosidasa/análisis
4.
Per Med ; 1(1): 63-84, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29793229

RESUMEN

CYP2C9 is the major human enzyme of the cytochrome P450 2C subfamily and metabolizes approximately 10% of all therapeutically relevant drugs. Two inherited SNPs termed CYP2C9*2 (Arg144Cys) and *3 (Ile359Leu) are known to affect catalytic function. Numerous rare or functionally silent polymorphisms have been identified. About 35% of the Caucasian population carries at least one *2 or *3 allele. CYP2C9 metabolizes several oral hypoglycemics, oral anticoagulants, non-steroidal anti-inflammatory drugs and other drugs, including phenytoin, losartan, fluvastatin, and torsemide. In vitro studies with several drugs indicate that the Cys144 (.2) and Leu359 (.3) variants confer only about 70 and 10% of the intrinsic clearance of the wild-type protein (.1), respectively. The clinical pharmacokinetic implications of these polymorphisms vary depending on the enzymes contribution to total oral clearance. Several studies demonstrated that the CYP2C9 polymorphisms are medically important for non-steroidal anti-inflammatory drugs, for oral hypoglycemics, vitamin K antagonistic oral anticoagulants, and phenytoin. In particular, CYP2C9 polymorphisms should be routinely considered in therapy with oral anticoagulants where severe adverse events at initiation of therapy might be reduced by genotyping. CYP2C9 polymorphisms were also clinically associated with side effects of phenytoin, with gastric bleeding during therapy with non-steroidals and with hypoglycemia under oral hypoglycemic drugs. Data appear mature enough for the routine consideration of CYP2C9 genotypes in therapy with acenocoumarol, phenytoin, warfarin, and some other drugs. Nevertheless, it is advisable before the routine clinical use of these genotype data to rigorously test the benefits of genotype-based therapeutic recommendations by randomized controlled clinical trials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA