Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nucleic Acids Res ; 51(D1): D1353-D1359, 2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36399499

RESUMEN

The Open Targets Platform (https://platform.opentargets.org/) is an open source resource to systematically assist drug target identification and prioritisation using publicly available data. Since our last update, we have reimagined, redesigned, and rebuilt the Platform in order to streamline data integration and harmonisation, expand the ways in which users can explore the data, and improve the user experience. The gene-disease causal evidence has been enhanced and expanded to better capture disease causality across rare, common, and somatic diseases. For target and drug annotations, we have incorporated new features that help assess target safety and tractability, including genetic constraint, PROTACtability assessments, and AlphaFold structure predictions. We have also introduced new machine learning applications for knowledge extraction from the published literature, clinical trial information, and drug labels. The new technologies and frameworks introduced since the last update will ease the introduction of new features and the creation of separate instances of the Platform adapted to user requirements. Our new Community forum, expanded training materials, and outreach programme support our users in a range of use cases.

2.
Nucleic Acids Res ; 50(D1): D1216-D1220, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34718739

RESUMEN

The European Variation Archive (EVA; https://www.ebi.ac.uk/eva/) is a resource for sharing all types of genetic variation data (SNPs, indels, and structural variants) for all species. The EVA was created in 2014 to provide FAIR access to genetic variation data and has since grown to be a primary resource for genomic variants hosting >3 billion records. The EVA and dbSNP have established a compatible global system to assign unique identifiers to all submitted genetic variants. The EVA is active within the Global Alliance of Genomics and Health (GA4GH), maintaining, contributing and implementing standards such as VCF, Refget and Variant Representation Specification (VRS). In this article, we describe the submission and permanent accessioning services along with the different ways the data can be retrieved by the scientific community.


Asunto(s)
Biología Computacional , Bases de Datos Genéticas , Variación Genética/genética , Programas Informáticos , Animales , Variación Estructural del Genoma/genética , Genómica , Humanos , Mutación INDEL/genética , Anotación de Secuencia Molecular , Polimorfismo de Nucleótido Simple/genética
3.
BMC Nephrol ; 20(1): 389, 2019 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-31655555

RESUMEN

BACKGROUND: Liddle syndrome is a monogenic disease with autosomal dominant inheritance. Basic characteristics of this disease are hypertension, reduced concentration of aldosterone and renin activity, as well as increased excretion of potassium leading to low level of potassium in serum and metabolic alkalosis. The cause of Liddle syndrome is missense or frameshift mutations in SCNN1A, SCNN1B, or SCNN1G genes that encode epithelial sodium channel subunits. CASE PRESENTATION: We describe a family with Liddle syndrome from Russia. 15-year-old proband has arterial hypertension, hypokalemia, hyporeninemia, metabolic alkalosis, but aldosterone level is within the normal range. At 12 years of age, arterial hypertension was noticed for the first time. We identified novel frameshift mutation c.1769delG (p.Gly590Alafs) in SCNN1G, which encodes the γ subunit of ENaC in vertebrates. The father and younger sister also harbor this heterozygous deletion. Treatment with amiloride of proband and his sister did not normalize the blood pressure, but normalized level of plasma renin activity. CONCLUSIONS: Our results expand the mutational spectrum of Liddle syndrome and provide further proof that the conserved PY motif is crucial to control of ENaC activity. Genetic analysis has implications for the management of hypertension, specific treatment with amiloride and counselling in families with Liddle syndrome.


Asunto(s)
Canales Epiteliales de Sodio/genética , Síndrome de Liddle/genética , Adolescente , Amilorida/uso terapéutico , Presión Sanguínea , Bloqueadores del Canal de Sodio Epitelial/uso terapéutico , Femenino , Mutación del Sistema de Lectura , Heterocigoto , Humanos , Síndrome de Liddle/tratamiento farmacológico , Síndrome de Liddle/fisiopatología , Masculino , Persona de Mediana Edad , Linaje , Renina/sangre , Federación de Rusia
4.
BMC Pediatr ; 19(1): 98, 2019 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-30961548

RESUMEN

BACKGROUND: Dystroglycanopathies, which are caused by reduced glycosylation of alpha-dystroglycan, are a heterogeneous group of neurodegenerative disorders characterized by variable brain and skeletal muscle involvement. Muscle-eye-brain disease (or muscular dystrophy-dystroglycanopathy type 3 A) is an autosomal recessive disorder characterized by congenital muscular dystrophy, ocular abnormalities, and lissencephaly. CASE PRESENTATION: We report clinical and genetic characteristics of a 6-year-old boy affected by muscular dystrophy-dystroglycanopathy. He has severe a delay in psychomotor and speech development, muscle hypotony, congenital myopia, partial atrophy of the optic nerve disc, increased level of creatine kinase, primary-muscle lesion, polymicrogyria, ventriculomegaly, hypoplasia of the corpus callosum, cysts of the cerebellum. Exome sequencing revealed compound heterozygous mutations in POMGNT1 gene (transcript NM_001243766.1): c.1539 + 1G > A and c.385C > T. CONCLUSIONS: The present case report shows diagnostic algorithm step by step and helps better understand the clinical and genetic features of congenital muscular dystrophy.


Asunto(s)
Mutación , N-Acetilglucosaminiltransferasas/genética , Síndrome de Walker-Warburg/genética , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Niño , Exoma , Heterocigoto , Humanos , Imagen por Resonancia Magnética , Masculino , Análisis de Secuencia de ADN
5.
BMC Med Genet ; 19(1): 151, 2018 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-30144815

RESUMEN

BACKGROUND: Neuronal ceroid lipofuscinoses (NCLs) are the most common autosomal recessive neurodegenerative disorders in children. Clinical manifestations include progressive cognitive decline, motor impairment, ataxia, visual loss, seizures and early death. To date more than 440 NCL-causing mutations in 13 genes are known. CASE PRESENTATION: We report clinical and genetic characteristics of a 5-year-old girl affected by ceroid lipofuscinosis type 7 (NCL7). She had progressive motor and mental deterioration since the age of 2,5 years. Later she developed progressive vision loss, stereotypies, action myoclonus and epilepsy. By the age of 5 years she stopped walking. Based on symptoms, diagnosis of Rett syndrome was suggested, but no abnormalities were detected in MeCP2. We identified a novel homozygous mutation in MFSD8 gene (c.525 T > A, p.Cys175Ter). To our knowledge, this is the first report of MFSD8 gene mutation in a Russian patient with variant late-infantile NCL. CONCLUSIONS: Our results enlarge mutational spectrum of ceroid lipofuscinosis type 7 and demonstrate tremendous diagnosis value of exome sequencing for pediatric NCLs. Also we confirmed that NCL should be suspected in patients with Rett-like phenotype at onset and negative MECP2 mutation.


Asunto(s)
Proteínas de Transporte de Membrana/genética , Mutación/genética , Lipofuscinosis Ceroideas Neuronales/genética , Preescolar , Femenino , Humanos , Federación de Rusia
6.
Bioinform Adv ; 4(1): vbae018, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38384863

RESUMEN

Summary: Semantic ontology mapping of clinical descriptors with disease outcome is essential. ClinVar is a key resource for human variation with known clinical significance. We present CMAT, a software toolkit and curation protocol for accurately enriching ClinVar releases with disease ontology associations and complex functional consequences. Availability and implementation: The software and ontology mappings can be obtained from: https://github.com/EBIvariation/CMAT.

7.
Cell Genom ; 1(2)2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-35311178

RESUMEN

Maximizing the personal, public, research, and clinical value of genomic information will require the reliable exchange of genetic variation data. We report here the Variation Representation Specification (VRS, pronounced "verse"), an extensible framework for the computable representation of variation that complements contemporary human-readable and flat file standards for genomic variation representation. VRS provides semantically precise representations of variation and leverages this design to enable federated identification of biomolecular variation with globally consistent and unique computed identifiers. The VRS framework includes a terminology and information model, machine-readable schema, data sharing conventions, and a reference implementation, each of which is intended to be broadly useful and freely available for community use. VRS was developed by a partnership among national information resource providers, public initiatives, and diagnostic testing laboratories under the auspices of the Global Alliance for Genomics and Health (GA4GH).

8.
Genes (Basel) ; 11(6)2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32466452

RESUMEN

Non-invasive prenatal testing (NIPT) for aneuploidy on Chromosomes 21 (T21), 18 (T18) and 13 (T13) is actively used in clinical practice around the world. One of the limitations of the wider implementation of this test is the high cost of the analysis itself, as high-throughput sequencing is still relatively expensive. At the same time, there is an increasing trend in the length of reads yielded by sequencers. Since extracellular DNA is short, in the order of 140-160 bp, it is not possible to effectively use long reads. The authors used high-performance sequencing of cell-free DNA (cfDNA) libraries that went through additional stages of enzymatic fragmentation and random ligation of the resulting products to create long chimeric reads. The authors used a controlled set of samples to analyze a set of cfDNA samples from pregnant women with a high risk of fetus aneuploidy according to the results of the first trimester screening and confirmed by invasive karyotyping of the fetus using laboratory and analytical approaches developed by the authors. They evaluated the sensitivity, specificity, PPV (positive predictive value), and NPV (negative predictive value) of the results. The authors developed a technique for constructing long chimeric reads from short cfDNA fragments and validated the test using a control set of extracellular DNA samples obtained from pregnant women. The obtained sensitivity and specificity parameters of the NIPT developed by the authors corresponded to the approaches proposed earlier (99.93% and 99.14% for T21; 100% and 98.34% for T18; 100% and 99.17% for T13, respectively).


Asunto(s)
Aneuploidia , Ácidos Nucleicos Libres de Células/sangre , Síndrome de la Trisomía 13/genética , Síndrome de la Trisomía 18/genética , Adulto , Ácidos Nucleicos Libres de Células/genética , Quimera/genética , Cromosomas Humanos Par 13/genética , Cromosomas Humanos Par 18/genética , Cromosomas Humanos Par 21/genética , Femenino , Humanos , Embarazo , Diagnóstico Prenatal , Síndrome de la Trisomía 13/sangre , Síndrome de la Trisomía 13/patología , Síndrome de la Trisomía 18/sangre , Síndrome de la Trisomía 18/patología
9.
F1000Res ; 92020.
Artículo en Inglés | MEDLINE | ID: mdl-34367618

RESUMEN

Copy number variations (CNVs) are major causative contributors both in the genesis of genetic diseases and human neoplasias. While "High-Throughput" sequencing technologies are increasingly becoming the primary choice for genomic screening analysis, their ability to efficiently detect CNVs is still heterogeneous and remains to be developed. The aim of this white paper is to provide a guiding framework for the future contributions of ELIXIR's recently established human CNV Community, with implications beyond human disease diagnostics and population genomics. This white paper is the direct result of a strategy meeting that took place in September 2018 in Hinxton (UK) and involved representatives of 11 ELIXIR Nodes. The meeting led to the definition of priority objectives and tasks, to address a wide range of CNV-related challenges ranging from detection and interpretation to sharing and training. Here, we provide suggestions on how to align these tasks within the ELIXIR Platforms strategy, and on how to frame the activities of this new ELIXIR Community in the international context.


Asunto(s)
Biología Computacional , Variaciones en el Número de Copia de ADN , Variaciones en el Número de Copia de ADN/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA