Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Pharmaceutics ; 15(6)2023 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-37376052

RESUMEN

Lipid nanoparticles (LNPs) have evolved rapidly as promising delivery systems for oligonucleotides, including siRNAs. However, current clinical LNP formulations show high liver accumulation after systemic administration, which is unfavorable for the treatment of extrahepatic diseases, such as hematological disorders. Here we describe the specific targeting of LNPs to hematopoietic progenitor cells in the bone marrow. Functionalization of the LNPs with a modified Leu-Asp-Val tripeptide, a specific ligand for the very-late antigen 4 resulted in an improved uptake and functional siRNA delivery in patient-derived leukemia cells when compared to their non-targeted counterparts. Moreover, surface-modified LNPs displayed significantly improved bone-marrow accumulation and retention. These were associated with increased LNP uptake by immature hematopoietic progenitor cells, also suggesting similarly improved uptake by leukemic stem cells. In summary, we describe an LNP formulation that successfully targets the bone marrow including leukemic stem cells. Our results thereby support the further development of LNPs for targeted therapeutic interventions for leukemia and other hematological disorders.

2.
Thromb Res ; 171: 155-159, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30312801

RESUMEN

INTRODUCTION: Recent genome wide association studies (GWAS) identified a novel susceptibility locus for thrombosis, harbouring the SLC44A2 gene which encodes the Solute Carrier Family 44 Member 2 protein (SLC44A2). Thus far, SLC44A2 has not been studied in the context of thrombosis, and may be a unique contributor to thrombotic disease. Here we utilize mice lacking SLC44A2 (Slc44a2-/-) to evaluate a possible role of SLC44A2 in hemostasis. METHODS: Slc44a2-/- mice were evaluated in key aspects of normal hemostasis including a challenge of vascular damage by applying laser induced injury to the cremaster muscle arteriole. RESULTS: Slc44a2-/- mice had comparable levels of thrombin generation and gene expression of coagulation related genes, as compared to littermate wild type controls. Lower levels of circulating plasma Von Willebrand factor (VWF) were measured in Slc44a2-/- mice, while no difference in VWF multimerization or vascular localization was detected. Upon in vivo laser injury of the cremaster arterioles, we detected an impairment of clot formation for Slc44a2-/- mice. CONCLUSIONS: Although mice lacking SLC44A2 are normal for several hemostasis parameters, we do observe a reduction of plasma VWF levels and an altered response upon vascular damage, which suggests that SLC44A2 contributes to hemostasis upon injury. These findings are in line with the reported GWAS data and support further research on SLC44A2 in thrombosis.


Asunto(s)
Eliminación de Gen , Hemostasis , Proteínas de Transporte de Membrana/genética , Trombosis/genética , Animales , Femenino , Estudio de Asociación del Genoma Completo , Masculino , Ratones , Ratones Endogámicos C57BL , Trombosis/sangre , Factor de von Willebrand/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA