Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Xenobiotica ; : 1-13, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38738708

RESUMEN

1. Over the past two decades antibody-drug conjugates (ADCs) have emerged as a highly effective drug delivery technology. ADCs utilize a monoclonal antibody, a chemical linker, and a therapeutic payload to selectively deliver highly potent pharmaceutical agents to specific cell types.2. Challenges such as premature linker cleavage and clearance due to linker hydrophobicity have adversely impacted the stability and safety of ADCs. While there are various solutions to these challenges, our team has focused on replacement of hydrophobic ValCit linkers (cleaved by CatB) with Asn-containing linkers that are cleaved by lysosomal legumain.3. Legumain is abundantly present in lysosomes and is known to play a role in tumor microenvironment dynamics. Herein, we directly compare the lysosomal cleavage, cytotoxicity, plasma stability, and efficacy of a traditional cathepsin cleavable ADC to a matched Asn-containing legumain-cleavable ADC.4. We demonstrate that Asn-containing linker sequences are specifically cleaved by lysosomal legumain and that Asn-linked MMAE ADCs are broadly active against a variety of tumors, even those with low legumain expression. Finally, we show that AsnAsn-linked ADCs exhibit comparable or improved efficacy to traditional ValCit-linked ADCs. Our study paves the way for replacement of the traditional ValCit linker technology with more hydrophilic Asn-containing peptide linker sequences.

2.
Mol Pharm ; 19(9): 3228-3241, 2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-35904247

RESUMEN

Traditional antibody-drug conjugate (ADC) technology has employed tumor-targeting antibodies to selectively deliver ultrapotent cytotoxins to tumor tissue. While this technology has been highly successful, resulting in the FDA approval of over 10 ADCs, the field continues to struggle with modest efficacy and significant off-target toxicity. Concurrent with the struggles of the ADC field, a new generation of immune-activating therapeutics has arisen, most clearly exemplified by the PD-1/PD-L1 inhibitors that are now part of standard-of-care treatment regimens for a variety of cancers. The success of these immuno-oncology therapeutic agents has prompted the investigation of a variety of new immuno-stimulant approaches, including toll-like receptor (TLR) activators. Herein, we describe the optimization of ADC technology for the selective delivery of a potent series of TLR7 agonists. A series of imidazole[4,5-c]quinoline agonists (as exemplified by compound 1) were shown to selectively agonize the human and mouse TLR7 receptor at low nanomolar concentrations, resulting in the release of IFNα from human peripheral blood mononuclear cells (hPBMCs) and the upregulation of CD86 on antigen-presenting cells. Compound 1 was attached to a deglycosylated (Fc-γ null) HER2-targeting antibody via a cleavable linker, resulting in an ADC (anti-HER2_vc-1) that potently and selectively activated the TLR7 pathway in tumor-associated macrophages via a "bystander" mechanism. We demonstrated that this ADC rapidly released the TLR7 agonist into the media when incubated with HER2+ cells. This release was not observed upon incubation with an isotype control ADC and furthermore was suppressed by co-administration of the naked antibody. In co-culture experiments with HER2+ HCC1954 cells, this ADC induced the activation of the NFκB pathway in mouse macrophages and the release of IFNα from hPBMCs, while a corresponding isotype control ADC did not. Finally, we demonstrated that IP administration of anti-HER2_vc-1 induced complete tumor regression in an HCC1954 xenograft study in SCID beige mice. Unlike related ADC technology that has been reported recently, our technology relies on the passive diffusion of the TLR7 agonist into tumor-associated macrophages rather than Fc-γ-mediated uptake. Based on these observations, we believe that this ADC technology holds significant potential for both oncology and infectious disease applications.


Asunto(s)
Antineoplásicos , Inmunoconjugados , Quinolinas , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Humanos , Inmunoconjugados/farmacología , Inmunoconjugados/uso terapéutico , Leucocitos Mononucleares , Ratones , Ratones SCID , Receptor Toll-Like 7 , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Bioorg Med Chem Lett ; 75: 128953, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36058468

RESUMEN

In spite of their value in prodrug applications, the use of esters in antibody-drug-conjugate (ADC) payloads and linkers has generally been avoided due to the ubiquitous and promiscuous nature of human esterases. ADCs generally have a long circulating half life (3-7 days) that makes them susceptible to esterase-mediated metabolism. Moreover, it is largely unclear whether lysosomal and cytosolic esterases cleave ester-containing linkers upon ADC internalization. Due to our interest in the targeted delivery of immune-modulators, our team has recently prepared a series of ester-linked dexamethasone ADCs. Herein, we report our studies of the functional activity of these ADCs, with a particular focus on their catabolism in various biological milieu. We found that esters are selectively but inefficiently cleaved upon cellular uptake, likely by cytosolic esterases. Lysosomal catabolism studies indicate that, in spite of the strong proteolytic activity, very little cleavage of ester-containing linkers occurs in the lysosome. However, ADCs bearing the ester-linked payloads are active in various immune-suppressive assays, suggesting that cytosolic cleavage is taking place. This was confirmed through LCMS quantitation of the payload following cell lysis. Finally, the stability of the ester linkage was evaluated in mouse and human plasma. We found, similar to other reports, there is a significant site-dependence on the cleavage. Esters attached at highly exposed sites, such as 443C, were rapidly cleaved in plasma while esters at more hindered sites, such at 334C, were not. Together, these results help to unravel the complexities of ester-incorporation into ADC linkers and pave a path forward for their utility in ADC applications.


Asunto(s)
Antineoplásicos , Inmunoconjugados , Profármacos , Animales , Dexametasona , Esterasas , Ésteres , Humanos , Inmunosupresores , Ratones , Profármacos/farmacología
4.
Bioconjug Chem ; 32(4): 842-858, 2021 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-33788548

RESUMEN

Over the past two decades, antibody drug conjugates (ADCs) and small molecule drug conjugates (SMDCs) have widely employed valine-citruline and related cathepsin-cleavable linkers due to their stability in plasma and their rapid cleavage by lysosomal cathepsins. However, a number of recent studies have illustrated that these linkers are subject to cleavage by exogenous enzymes such as Ces1C and neutrophil elastase, thus resulting in off-target release of drug. As such, there is a need to diversify the portfolio of ADC linkers in order to overcome nonspecific drug release. Rather than targeting cathepsins, we began with an "enzyme agnostic" screen in which a panel of 75 peptide FRET pairs were screened for cleavage in lysosomal extracts and in plasma. Unexpectedly, a series of Asn-containing peptides emerged from this screen as being cleaved far more quickly than traditional ValCit-type linkers while retaining excellent stability in plasma. Catabolism studies demonstrated that these linkers were cleaved by legumain, an asparaginyl endopeptidase that is overexpressed in a variety of cancers and is known to be present in the lysosome. MMAE-containing ADCs that incorporated these new linkers were shown to exhibit highly potent and selective cytotoxicity, comparable to analogous ValCit ADCs. Importantly, the Asn-containing linkers were shown to be completely stable to human neutrophil elastase, an enzyme thought to be responsible for the neutropenia and thrombocytopenia associated with ValCitPABC-MMAE ADCs. The legumain-cleavable ADCs were shown to have excellent stability in both mouse and human serum, retaining >85% of the drug after 1 week of incubation. Moreover, the corresponding small molecule FRET pairs exhibited <10% cleavage after 18 h in mouse and human serum. On the basis of these results, we believe that these new linkers (AsnAsn in particular) have significant potential in both ADC and SMDC drug delivery applications.


Asunto(s)
Cisteína Endopeptidasas/química , Enzimas/química , Inmunoconjugados/química , Lisosomas/química , Animales , Estabilidad de Medicamentos , Transferencia Resonante de Energía de Fluorescencia , Humanos , Ratones , Péptidos/química
5.
Hosp Pharm ; 56(4): 338-342, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34381271

RESUMEN

Purpose: To evaluate the chemical and physical stability of an admixture containing cefepime and vancomycin in a single volume of lactated Ringer solution at refrigerated temperatures. Methods: Cefepime 2000 mg and vancomycin 1000 mg were, respectively, reconstituted with 10 and 20 mL of sterile water for injection (SWFI) per manufacturer instructions. This resulted in cefepime and vancomycin concentrations of 200 and 50 mg/mL, respectively. The resulting cefepime and vancomycin solutions at 10 and 20 mL, respectively, were drawn up and injected into 1000 mL lactated Ringer solution. Aliquot samples were obtained on days 0 to 9, visually inspected for gross incompatibility, and then stored at -80°C. Samples were thawed on the day of the analysis and run through ultraperformance liquid chromatography. Area under the concentration-time curve (AUC) on each day was compared with baseline AUC values. Chemical stability was defined as an AUC more than 93% of the baseline value. Results: No evidence of gross physical incompatibility was observed by visual inspection. Cefepime and vancomycin replicants were more than 94.5% and 98% of baseline AUC values. Therefore, all sample replicants were found to be more than 93% of their baseline AUC value. Conclusion: An admixture containing cefepime 2000 mg and vancomycin 1000 mg in 1000 mL lactated Ringer solution appears to be chemically and physically stable at refrigerated temperatures for up to 9 days.

6.
Angew Chem Int Ed Engl ; 59(33): 13814-13820, 2020 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-32268004

RESUMEN

The substrate promiscuity of microbial transglutaminase (mTG) has been exploited in various applications in biotechnology, in particular for the attachment of alkyl amines to glutamine-containing peptides and proteins. Here, we expand the substrate repertoire to include hydrazines, hydrazides, and alkoxyamines, resulting in the formation of isopeptide bonds with varied susceptibilities to hydrolysis or exchange by mTG. Furthermore, we demonstrate that simple unsubstituted hydrazine and dihydrazides can be used to install reactive hydrazide handles onto the side chain of internal glutamine residues. The distinct hydrazide handles can be further coupled with carbonyls, including ortho-carbonylphenylboronic acids, to form site-specific and functional bioconjugates with tunable hydrolytic stability. The extension of the substrate scope of mTG beyond canonical amines thus substantially broadens the versatility of the enzyme, providing a new approach to facilitate novel applications.


Asunto(s)
Streptomyces/enzimología , Transglutaminasas/metabolismo , Azidas/metabolismo , Catálisis , Hidrazinas/metabolismo , Hidrólisis , Péptidos/metabolismo , Especificidad por Sustrato
7.
Bioconjug Chem ; 30(5): 1554-1564, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-31026151

RESUMEN

Precise control of covalent bond formation in the presence of multiple functional groups is pertinent in the development of many next-generation bioconjugates and materials. Strategies derived from bioorthogonal chemistries are contributing greatly in that regard; however, the gain of chemoselectivity is often compromised by the slow rates of many of these existing chemistries. Recent work on a variation of the classical aldehyde/ketone condensation based on ortho-carbonylphenylboronic acids has uncovered markedly accelerated rates compared to those of the simple carbonyl counterparts. The products of these reactions are distinct, often in the form of boron-nitrogen heterocycles. In particular, we have shown that 2-formylphenylboronic acid (2fPBA), when coupled with an α-amino-hydrazide, produces a unique zwitterionic and stable 2,3,1-benzodiazaborine derivative. In this work, we apply this chemistry to generate chemically defined and functional bioconjugates, herein illustrated with immunoconjugates. We show that an antibody and a fluorophore (as payload) equipped with the relevant reactive handles undergo rapid conjugation at near-stoichiometric ratios, displaying a reaction half-life of only ∼5 min with 2 equiv of the linker payload. Importantly, the reaction can be extended to multicomponent labeling by partnering with the popular strain-promoted azide-alkyne cycloaddition and tetrazine- trans-cyclooctene (Tz-TCO) ligation. The mutual orthogonality to both of these chemistries allows simultaneous triple bioorthogonal conjugations, a rare feat thus far that will widen the scope of various multilabeling applications. Further collaboration with the Tz-TCO reaction enables rapid one-pot synthesis of a site-specific dual-payload antibody conjugate. Altogether, we envision that the 2fPBA-α-amino-hydrazide ligation will facilitate efficient assembly of diverse bioconjugates and materials, enabling access to more complex modalities via partnership with other orthogonal chemistries.


Asunto(s)
Boro/química , Compuestos Heterocíclicos/química , Nitrógeno/química , Azidas/química , Colorantes Fluorescentes/química , Inmunoconjugados/química
8.
Bioconjug Chem ; 30(1): 200-209, 2019 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-30543418

RESUMEN

A potent class of DNA-damaging agents, natural product bis-intercalator depsipeptides (NPBIDs), was evaluated as ultrapotent payloads for use in antibody-drug conjugates (ADCs). Detailed investigation of potency (both in cells and via biophysical characterization of DNA binding), chemical tractability, and in vitro and in vivo stability of the compounds in this class eliminated a number of potential candidates, greatly reducing the complexity and resources required for conjugate preparation and evaluation. This effort yielded a potent, stable, and efficacious ADC, PF-06888667, consisting of the bis-intercalator, SW-163D, conjugated via an N-acetyl-lysine-valine-citrulline- p-aminobenzyl alcohol- N, N-dimethylethylenediamine (AcLysValCit-PABC-DMAE) linker to an engineered variant of the anti-Her2 mAb, trastuzumab, catalyzed by transglutaminase.


Asunto(s)
Productos Biológicos/química , Depsipéptidos/química , Inmunoconjugados/química , Sustancias Intercalantes/química , Animales , Antineoplásicos Inmunológicos/química , Línea Celular Tumoral , ADN/química , Depsipéptidos/sangre , Depsipéptidos/farmacocinética , Equinomicina/química , Genes erbB-2 , Semivida , Xenoinjertos , Humanos , Ratones , Trastuzumab/química
9.
Mol Pharm ; 16(6): 2795-2807, 2019 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-31067063

RESUMEN

Site-specific conjugation technology frequently relies on antibody engineering to incorporate rare or non-natural amino acids into the primary sequence of the protein. However, when the primary sequence is unknown or when antibody engineering is not feasible, there are very limited options for site-specific protein modification. We have developed a transglutaminase-mediated conjugation that incorporates a thiol at a "privileged" location on deglycosylated antibodies (Q295). Perhaps surprisingly, this conjugation employs a reported transglutaminase inhibitor, cystamine, as the key enzyme substrate. The chemical incorporation of a thiol at the Q295 site allows for the site-specific attachment of a plethora of commonly used and commercially available payloads via maleimide chemistry. Herein, we demonstrate the utility of this method by comparing the conjugatability, plasma stability, and in vitro potency of these site-specific antibody-drug conjugates (ADCs) with analogous endogenous cysteine conjugates. Cytotoxic ADCs prepared using this methodology are shown to exhibit comparable in vitro efficacy to stochastic cysteine conjugates while displaying dramatically improved plasma stability and conjugatability. In particular, we note that this technique appears to be useful for the incorporation of highly hydrophobic linker payloads without the addition of PEG modifiers. We postulate a possible mechanism for this feature by probing the local environment of the Q295 site with two fluorescent probes that are known to be sensitive to the local hydrophobic environment. In summary, we describe a highly practical method for the site-specific conjugation of genetically nonengineered antibodies, which results in plasma-stable ADCs with low intrinsic hydrophobicity. We believe that this technology will find broad utility in the ADC community.


Asunto(s)
Inmunoconjugados/química , Péptidos/química , Proteínas/química , Ingeniería Genética , Interacciones Hidrofóbicas e Hidrofílicas
10.
Bioconjug Chem ; 28(2): 620-626, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28140559

RESUMEN

As antibody-drug conjugate (ADC) design is evolving with novel payload, linker, and conjugation chemistry, the need for sensitive and precise quantitative measurement of conjugated payload to support pharmacokinetics (PK) is in high demand. Compared to ADCs containing noncleavable linkers, a strategy specific to linkers which are liable to pH, chemical reduction, or enzymatic cleavage has gained popularity in recent years. One bioanalytical approach to take advantage of this type of linker design is the development of a PK assay measuring released conjugated payload. For the ADC utilizing a dipeptide ValCit linker studied in this report, the release of payload PF-06380101 was achieved with high efficiency using a purified cathepsin B enzyme. The subsequent liquid chromatography mass spectrometry (LC/MS) quantitation leads to the PK profile of the conjugated payload. For this particular linker using a maleimide-based conjugation chemistry, one potential route of payload loss would result in an albumin adduct of the linker-payload. While this adduct's formation has been previously reported, here, for the first time, we have shown that payload from a source other than ADC contributes only up to 4% of total conjugated payload while it accounts for approximately 35% of payload lost from the ADC at 48 h after dosing to rats.


Asunto(s)
Catepsina B/metabolismo , Inmunoconjugados/metabolismo , Inmunoconjugados/farmacocinética , Animales , Alcoholes Bencílicos/química , Alcoholes Bencílicos/metabolismo , Dipéptidos/química , Dipéptidos/metabolismo , Diseño de Fármacos , Inmunoconjugados/química , Masculino , Maleimidas/química , Maleimidas/metabolismo , Ratas Sprague-Dawley
11.
Anal Chem ; 88(9): 4979-86, 2016 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-27075639

RESUMEN

The reactive thiol of cysteine is often used for coupling maleimide-containing linker-payloads to antibodies resulting in the generation of antibody drug conjugates (ADCs). Currently, a numbers of ADCs in drug development are made by coupling a linker-payload to native or engineered cysteine residues on the antibody. An ADC conjugated via hinge-cysteines to an auristatin payload was used as a model in this study to understand the impact of the maleimide linkers on ADC stability. The payload was conjugated to trastuzumab by a protease-cleavable linker, maleimido-caproyl-valine-citruline-p-amino-benzyloxy carbonyl (mcVC-PABC). In plasma stability assays, when the ADC (Trastuzumab-mcVC-PABC-Auristatin-0101) was incubated with plasma over a 144-h time-course, a discrepancy was observed between the measured released free payload concentration and the measured loss of drug-to-antibody ratio (DAR), as measured by liquid chromatography-mass spectrometry (LC-MS). We found that an enzymatic release of payload from ADC-depleted human plasma at 144 h was able to account for almost 100% of the DAR loss. Intact protein mass analysis showed that at the 144 h time point, the mass of the major protein in ADC-depleted human plasma had an additional 1347 Da over the native albumin extracted from human plasma, exactly matching the mass of the linker-payload. In addition, protein gel electrophoresis showed that there was only one enriched protein in the 144 h ADC-depleted and antipayload immunoprecipitated plasma sample, as compared to the 0 h plasma immunoprecipitated sample, and the mass of this enriched protein was slightly heavier than the mass of serum albumin. Furthermore, the albumin adduct was also identified in 96 h and 168 h postdose in vivo cynomolgus monkey plasma. These results strongly suggest that the majority of the deconjugated mc-VC-PABC-auristatin ultimately is transferred to serum albumin, forming a long-lived albumin-linker-payload adduct. To our knowledge, this is the first report quantitatively characterizing the extent of linker-payload transfer to serum albumin and the first clear example of in vivo formation of an albumin-linker-payload adduct.


Asunto(s)
Aminobenzoatos/química , Maleimidas/química , Oligopéptidos/química , Trastuzumab/química , Aminobenzoatos/sangre , Animales , Humanos , Macaca fascicularis , Maleimidas/sangre , Oligopéptidos/sangre , Ratas , Trastuzumab/sangre
12.
Bioconjug Chem ; 27(4): 1030-9, 2016 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-26942771

RESUMEN

The focus of the antibody-drug conjugate (ADC) field is shifting toward development of site-specific, next-generation ADCs to address the issue of heterogeneity, metabolic instability, conjugatability, and less than ideal therapeutic index associated with the conventional (heterogeneous) ADCs. It is evident from the recent literature that the site of conjugation, the structure of the linker, and the physicochemical properties of the linker-payload all have a significant impact on the safety and efficacy of the resulting ADCs. Screening multiple linker-payloads on multiple sites of an antibody presents a combinatorial problem that necessitates high-throughput conjugation and purification methodology to identify ADCs with the best combination of site and payload. Toward this end, we developed a protein A/L-based solid-phase, site-specific conjugation and purification method that can be used to generate site-specific ADCs in a 96-well plate format. This solid-phase method has been shown to be versatile because of its compatibility with various conjugation functional handles such as maleimides, haloacetamides, copper free click substrates, and transglutaminase substrates. The application of this methodology was further expanded to generate dual labeled, site-specific antibody and Fab conjugates.


Asunto(s)
Anticuerpos/química , Inmunoconjugados/química , Fragmentos Fab de Inmunoglobulinas/química
13.
Bioconjug Chem ; 27(8): 1880-8, 2016 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-27412791

RESUMEN

There is a considerable ongoing work to identify new cytotoxic payloads that are appropriate for antibody-based delivery, acting via mechanisms beyond DNA damage and microtubule disruption, highlighting their importance to the field of cancer therapeutics. New modes of action will allow a more diverse set of tumor types to be targeted and will allow for possible mechanisms to evade the drug resistance that will invariably develop to existing payloads. Spliceosome inhibitors are known to be potent antiproliferative agents capable of targeting both actively dividing and quiescent cells. A series of thailanstatin-antibody conjugates were prepared in order to evaluate their potential utility in the treatment of cancer. After exploring a variety of linkers, we found that the most potent antibody-drug conjugates (ADCs) were derived from direct conjugation of the carboxylic acid-containing payload to surface lysines of the antibody (a "linker-less" conjugate). Activity of these lysine conjugates was correlated to drug-loading, a feature not typically observed for other payload classes. The thailanstatin-conjugates were potent in high target expressing cells, including multidrug-resistant lines, and inactive in nontarget expressing cells. Moreover, these ADCs were shown to promote altered splicing products in N87 cells in vitro, consistent with their putative mechanism of action. In addition, the exposure of the ADCs was sufficient to result in excellent potency in a gastric cancer xenograft model at doses as low as 1.5 mg/kg that was superior to the clinically approved ADC T-DM1. The results presented herein therefore open the door to further exploring splicing inhibition as a potential new mode-of-action for novel ADCs.


Asunto(s)
Productos Biológicos/química , Inmunoconjugados/química , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Animales , Ácidos Carboxílicos/química , Línea Celular Tumoral , Transformación Celular Neoplásica , Cisteína/química , Humanos , Inmunoconjugados/farmacocinética , Inmunoconjugados/farmacología , Lisina/química , Maleimidas/química , Ratones , Piranos/química , Distribución Tisular
14.
Bioconjug Chem ; 25(10): 1871-80, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25216346

RESUMEN

The stability of the connection between the antibody and the toxin can have a profound impact on ADC safety and efficacy. There has been increasing evidence in recent years that maleimide-based ADCs are prone to payload loss via a retro-Michael type reaction. Herein, we report a mild method for the hydrolysis of the succinimide-thioether ring which results in a "ring-opened" linker. ADCs containing this hydrolyzed succinimide linker show equivalent cytotoxicity, improved in vitro stability, improved PK exposure, and improved efficacy as compared to their nonhydrolyzed counterparts. This method offers a simple way to improve the stability, exposure, and efficacy of maleimide-based ADCs.


Asunto(s)
Inmunotoxinas/química , Succinimidas/química , Sulfuros/química , Animales , Línea Celular Tumoral , Estabilidad de Medicamentos , Humanos , Hidrólisis , Inmunotoxinas/sangre , Inmunotoxinas/uso terapéutico , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Estabilidad Proteica
15.
Bioorg Med Chem Lett ; 24(9): 2066-72, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24726805

RESUMEN

IRAK4 is responsible for initiating signaling from Toll-like receptors (TLRs) and members of the IL-1/18 receptor family. Kinase-inactive knock-ins and targeted deletions of IRAK4 in mice cause reductions in TLR induced pro-inflammatory cytokines and these mice are resistant to various models of arthritis. Herein we report the identification and optimization of a series of potent IRAK4 inhibitors. Representative examples from this series showed excellent selectivity over a panel of kinases, including the kinases known to play a role in TLR-mediated signaling. The compounds exhibited low nM potency in LPS- and R848-induced cytokine assays indicating that they are blocking the TLR signaling pathway. A key compound (26) from this series was profiled in more detail and found to have an excellent pharmaceutical profile as measured by predictive assays such as microsomal stability, TPSA, solubility, and clogP. However, this compound was found to afford poor exposure in mouse upon IP or IV administration. We found that removal of the ionizable solubilizing group (32) led to increased exposure, presumably due to increased permeability. Compounds 26 and 32, when dosed to plasma levels corresponding to ex vivo whole blood potency, were shown to inhibit LPS-induced TNFα in an in vivo murine model. To our knowledge, this is the first published in vivo demonstration that inhibition of the IRAK4 pathway by a small molecule can recapitulate the phenotype of IRAK4 knockout mice.


Asunto(s)
Indoles/química , Indoles/farmacología , Quinasas Asociadas a Receptores de Interleucina-1/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Quinolinas/química , Quinolinas/farmacología , Animales , Femenino , Humanos , Indoles/farmacocinética , Quinasas Asociadas a Receptores de Interleucina-1/inmunología , Lipopolisacáridos/inmunología , Ratones , Ratones Endogámicos C57BL , Modelos Moleculares , Inhibidores de Proteínas Quinasas/farmacocinética , Quinolinas/farmacocinética , Transducción de Señal/efectos de los fármacos
16.
Biomed Opt Express ; 14(6): 2551-2564, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37342714

RESUMEN

The low pH of the lysosomal compartment often results in sequestration of chemotherapeutic agents that contain positively charged basic functional groups, leading to anti-cancer drug resistance. To visualize drug localization in lysosomes and its influence on lysosomal functions, we synthesize a group of drug-like compounds that contain both a basic functional group and a bisarylbutadiyne (BADY) group as a Raman probe. With quantitative stimulated Raman scattering (SRS) imaging, we validate that the synthesized lysosomotropic (LT) drug analogs show high lysosomal affinity, which can also serve as a photostable lysosome tracker. We find that long-term retention of the LT compounds in lysosomes leads to the increased amount and colocalization of both lipid droplets (LDs) and lysosomes in SKOV3 cells. With hyperspectral SRS imaging, further studies find that the LDs stuck in lysosomes are more saturated than the LDs staying out of the lysosomes, indicating impaired lysosomal lipid metabolism by the LT compounds. These results demonstrate that SRS imaging of the alkyne-based probes is a promising approach to characterizing the lysosomal sequestration of drugs and its influence on cell functions.

17.
RSC Med Chem ; 14(11): 2348-2357, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37974960

RESUMEN

Glucocorticoids (GCs) are effective in treating autoimmune and inflammatory disorders but come with significant side effects, many of which are mediated by non-immunological cells. Therefore, there is rapidly growing interest in using antibody drug conjugate (ADC) technology to deliver GCs specifically to immune cells, thereby minimizing off-target side effects. Herein, we report the study of anti-CD11a, anti-CD38, and anti-TNFα ADCs to deliver dexamethasone to monocytes. We found that anti-CD11a and anti-CD38 were rapidly internalized by monocytes, while uptake of anti-TNFα depended on pre-activation with LPS. Using these antibodies were attached to a novel linker system, ValCitGlyPro-Dex (VCGP-Dex), that efficiently released dexamethasone upon lysosomal catabolism. This linker relies on lysosomal cathepsins to cleave after the ValCit sequence, thereby releasing a GlyPro-Dex species that undergoes rapid self-immolation to form dexamethasone. The resulting monocyte-targeting ADCs bearing this linker payload effectively suppressed LPS-induced NFκB activation and cytokine release in both a monocytic cell line (THP1) and in human PBMCs. Anti-TNFα_VCGP-Dex and anti-CD38_VCGP-Dex were particularly effective, suppressing ∼60-80% of LPS-induced IL-6 release from PBMCs at 3-10 µg mL-1 concentrations. In contrast, the corresponding isotype control ADC (anti-RSV) and the corresponding naked antibodies (anti-CD38 and anti-TNFα) resulted in only modest suppression (0-30%) of LPS-induced IL-6. Taken together, these results provide further evidence of the ability of glucocorticoid-ADCs to selectively suppress immune responses, and highlight the potential of two targets (CD38 and TNFα) for the development of novel immune-suppressing ADCs.

18.
ACS Med Chem Lett ; 14(10): 1358-1368, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37849530

RESUMEN

TLR7 agonists have significant therapeutic potential in a variety of oncology and autoimmune applications. We recently reported a potent TLR7 selective agonist 1 that could be delivered by antibody-drug conjugate (ADC) technology to elicit potent anticancer activity. Herein we report synthetic chemistry and structure-activity relationship studies to develop TLR7 agonists with improved potency for next-generation ADC efforts. We found that the addition of hydrophobic acyl tails to parent compound 1 generally resulted in retained or improved TLR7 agonist activity without sacrificing the permeability or the selectivity over TLR8. In contrast, the addition of a simple alkyl tail at the same position resulted in a dramatic loss in potency. Molecular modeling was performed to provide a rationale for this dramatic loss in potency. We ultimately identified compounds 17b, 16b, and 16d as highly potent TLR7 agonists that potently induced the activation of mouse macrophages and hPBMCs at low-nanomolar concentrations.

19.
Genes (Basel) ; 13(8)2022 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-36011352

RESUMEN

KRAS is a well-validated anti-cancer therapeutic target, whose transcriptional downregulation has been demonstrated to be lethal to tumor cells with aberrant KRAS signaling. G-quadruplexes (G4s) are non-canonical nucleic acid structures that mediate central dogmatic events, such as DNA repair, telomere elongation, transcription and splicing events. G4s are attractive drug targets, as they are more globular than B-DNA, enabling more selective gene interactions. Moreover, their genomic prevalence is increased in oncogenic promoters, their formation is increased in human cancers, and they can be modulated with small molecules or targeted nucleic acids. The putative formation of multiple G4s has been described in the literature, but compounds with selectivity among these structures have not yet been able to distinguish between the biological contribution of the predominant structures. Using cell free screening techniques, synthesis of novel indoloquinoline compounds and cellular models of KRAS-dependent cancer cells, we describe compounds that choose between KRAS promoter G4near and G4mid, correlate compound cytotoxic activity with KRAS regulation, and highlight G4mid as the lead molecular non-canonical structure for further targeting efforts.


Asunto(s)
G-Cuádruplex , Neoplasias , Regulación hacia Abajo , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas p21(ras)/genética , Telómero
20.
Clin Cancer Res ; 27(2): 622-631, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33148666

RESUMEN

PURPOSE: Mortality due to acute myeloid leukemia (AML) remains high, and the management of relapsed or refractory AML continues to be therapeutically challenging. The reapproval of Mylotarg, an anti-CD33-calicheamicin antibody-drug conjugate (ADC), has provided a proof of concept for an ADC-based therapeutic for AML. Several other ADCs have since entered clinical development of AML, but have met with limited success. We sought to develop a next-generation ADC for AML with a wide therapeutic index (TI) that overcomes the shortcomings of previous generations of ADCs. EXPERIMENTAL DESIGN: We compared the TI of our novel CD33-targeted ADC platform with other currently available CD33-targeted ADCs in preclinical models of AML. Next, using this next-generation ADC platform, we performed a head-to-head comparison of two attractive AML antigens, CD33 and CD123. RESULTS: Our novel ADC platform offered improved safety and TI when compared with certain currently available ADC platforms in preclinical models of AML. Differentiation between the CD33- and CD123-targeted ADCs was observed in safety studies conducted in cynomolgus monkeys. The CD33-targeted ADC produced severe hematologic toxicity, whereas minimal hematologic toxicity was observed with the CD123-targeted ADC at the same doses and exposures. The improved toxicity profile of an ADC targeting CD123 over CD33 was consistent with the more restricted expression of CD123 in normal tissues. CONCLUSIONS: We optimized all components of ADC design (i.e., leukemia antigen, antibody, and linker-payload) to develop an ADC that has the potential to translate into an effective new therapy against AML.


Asunto(s)
Gemtuzumab/uso terapéutico , Inmunoconjugados/uso terapéutico , Subunidad alfa del Receptor de Interleucina-3/antagonistas & inhibidores , Leucemia Mieloide Aguda/tratamiento farmacológico , Lectina 3 Similar a Ig de Unión al Ácido Siálico/antagonistas & inhibidores , Animales , Antineoplásicos Inmunológicos/inmunología , Antineoplásicos Inmunológicos/farmacocinética , Antineoplásicos Inmunológicos/uso terapéutico , Área Bajo la Curva , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Gemtuzumab/inmunología , Gemtuzumab/farmacocinética , Células HL-60 , Humanos , Inmunoconjugados/inmunología , Inmunoconjugados/farmacocinética , Subunidad alfa del Receptor de Interleucina-3/inmunología , Leucemia Mieloide Aguda/inmunología , Leucemia Mieloide Aguda/metabolismo , Macaca fascicularis , Ratones , Lectina 3 Similar a Ig de Unión al Ácido Siálico/inmunología , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA