Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Acta Virol ; 66(2): 186-191, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35766476

RESUMEN

Sweepoviruses represent a phylogenetic group of begomoviruses that cause significant sweet potato (Ipomoea batatas) production losses in various countries across the world. For rapid identification of sweepoviruses, we developed a technique based on isothermal recombinase polymerase amplification in conjunction with lateral flow dipsticks (RPA-LFD). The optimum reaction conditions for the RPA were 20 min incubation at 37°C. The RPA-LFD specifically detected distinct sweepovirus species, with no other viruses infecting sweet potato causing a cross-reaction. The detection limit of the RPA-LFD was 1.0×104 copies of the target DNA molecule per reaction, and it exhibited a 10-fold greater sensitivity than the conventional PCR. Furthermore, when coupled with an alkaline polyethylene glycol-based crude genomic DNA extraction, the entire procedure was completed in 30 min without the use of any special instruments other than a water bath. Therefore, the RPA-LFD technique is a potential sweepovirus diagnostic tool that can be used in the field with fewer available resources. Keywords: detection; sweepoviruses; recombinase polymerase amplification; lateral flow dipstick.


Asunto(s)
Técnicas de Amplificación de Ácido Nucleico , Recombinasas , Técnicas de Amplificación de Ácido Nucleico/métodos , Filogenia , Reacción en Cadena de la Polimerasa , Recombinasas/genética , Sensibilidad y Especificidad
2.
J Virol ; 95(1)2020 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-33055249

RESUMEN

Potyviridae is the largest family of plant-infecting RNA viruses and includes many agriculturally and economically important viral pathogens. The viruses in the family, known as potyvirids, possess single-stranded, positive-sense RNA genomes with polyprotein processing as a gene expression strategy. The N-terminal regions of potyvirid polyproteins vary greatly in sequence. Previously, we identified a novel virus species within the family, Areca palm necrotic spindle-spot virus (ANSSV), which was predicted to encode two cysteine proteases, HCPro1 and HCPro2, in tandem at the N-terminal region. Here, we present evidence showing self-cleavage activity of these two proteins and define their cis-cleavage sites. We demonstrate that HCPro2 is a viral suppressor of RNA silencing (VSR), and both the variable N-terminal and conserved C-terminal (protease domain) moieties have antisilencing activity. Intriguingly, the N-terminal region of HCPro1 also has RNA silencing suppression activity, which is, however, suppressed by its C-terminal protease domain, leading to the functional divergence of HCPro1 and HCPro2 in RNA silencing suppression. Moreover, the deletion of HCPro1 or HCPro2 in a newly created infectious clone abolishes viral infection, and the deletion mutants cannot be rescued by addition of corresponding counterparts of a potyvirus. Altogether, these data suggest that the two closely related leader proteases of ANSSV have evolved differential and essential functions to concertedly maintain viral viability.IMPORTANCE The Potyviridae represent the largest group of known plant RNA viruses and account for more than half of the viral crop damage worldwide. The leader proteases of viruses within the family vary greatly in size and arrangement and play key roles during the infection. Here, we experimentally demonstrate the presence of a distinct pattern of leader proteases, HCPro1 and HCPro2 in tandem, in a newly identified member within the family. Moreover, HCPro1 and HCPro2, which are closely related and typically characterized with a short size, have evolved contrasting RNA silencing suppression activity and seem to function in a coordinated manner to maintain viral infectivity. Altogether, the new knowledge fills a missing piece in the evolutionary relationship history of potyvirids and improves our understanding of the diversification of potyvirid genomes.


Asunto(s)
Proteasas de Cisteína/metabolismo , Potyviridae/enzimología , Interferencia de ARN , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Proteasas de Cisteína/genética , Genes Supresores , Genoma Viral , Viabilidad Microbiana , Mutación , Filogenia , Enfermedades de las Plantas/virología , Poliproteínas , Potyviridae/genética , Dominios Proteicos , ARN Viral/genética , Proteínas Virales/genética
3.
Phytopathology ; 110(1): 187-193, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31516080

RESUMEN

Potyviral helper component protease (HC-Pro), as a major determinant of symptom expression in susceptible plants, is a likely target candidate in the production of attenuated strains for cross-protection. In this study, single or double mutations of Lys (K) to Glu (E) in the Lys-Ile-Thr-Cys motif and Arg (R) to Ile (I) in the Phe-Arg-Asn-Lys motif of the HC-Pro from the severe papaya leaf distortion mosaic virus strain DF (PLDMV-DF) reduced symptom expression and virus accumulation in infected papaya (Carica papaya) plants. The papaya plants infected with the attenuated double mutant of PLDMV-EI presented as symptomless. PLDMV-EI provided effective protection against PLDMV-DF infection in three papaya cultivars and had no effect on plant growth and development. Our result showed that PLDMV-EI is a promising mild strain for the practical use of cross-protection in the field.


Asunto(s)
Secuencias de Aminoácidos , Carica , Péptido Hidrolasas , Potyvirus , Secuencias de Aminoácidos/genética , Carica/virología , Mutación/genética , Péptido Hidrolasas/genética , Potyvirus/enzimología , Potyvirus/genética
4.
Protein Expr Purif ; 146: 17-22, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29373846

RESUMEN

Plant methionine sulfoxide reductase B1 (MsrB1) protects the photosynthetic apparatus from oxidative damage by scavenging reactive oxygen species to repair Met-oxidized proteins in response to abiotic stresses and biotic attack. Papaya MsrB1 (PaMsrB1) was identified previously to interact with papaya ringspot virus NIa-Pro, and this interaction inhibits the import of PaMsrB1 into the chloroplast. Further functional characterization of PaMsrB1 requires the production of a biologically active purified recombinant protein. In this report, PaMsrB1 as a fusion protein containing an N-terminal maltose-binding protein (MBP) was expressed in Escherichia coli Rosetta (DE3) cells and purified. Production of soluble fusion protein was greater when the cells were cultured at 16 °C than at 37 °C. The Factor Xa protease digested MBP-PaMsrB1 fusion protein and subsequently purified recombinant PaMsrB1 specifically reduced the R-diastereomer of methionine sulfoxide (MetSO) and Dabsyl-MetSO to Met in the presence of dithiothreitol. Eight chloroplast-localized and five non-chloroplast-localized candidate proteins that interact with PaMsrB1 were isolated by affinity chromatography and liquid chromatography coupled to tandem mass spectrometry. The results provide a platform to further understand the anti-oxidative defense mechanism of PaMsrB1.


Asunto(s)
Carica/enzimología , Metionina Sulfóxido Reductasas/metabolismo , Mapas de Interacción de Proteínas , Secuencia de Aminoácidos , Carica/química , Carica/genética , Carica/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Escherichia coli/genética , Expresión Génica , Metionina Sulfóxido Reductasas/química , Metionina Sulfóxido Reductasas/genética , Oxidación-Reducción , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Solubilidad
5.
Virus Genes ; 54(6): 833-839, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30218292

RESUMEN

We used green fluorescent protein (GFP)-tagged Papaya leaf distortion mosaic virus (PLDMV-GFP) to track PLDMV infection by fluorescence. The virus-derived small interfering RNAs (vsiRNAs) of PLDMV-GFP were characterized from papaya plants by next-generation sequencing. The foreign GFP gene inserted into the PLDMV genome was also processed as a viral gene into siRNAs by components involved in RNA silencing. The siRNAs derived from PLDMV-GFP accumulated preferentially as 21- and 22-nucleotide (nt) lengths, and most of the 5'-terminal ends were biased towards uridine (U) and adenosine (A). The single-nucleotide resolution map revealed that vsiRNAs were heterogeneously distributed throughout the PLDMV-GFP genome, and vsiRNAs derived from the sense strand were more abundant than those from the antisense strand. The hotspots were mainly distributed in the P1 and GFP coding region of the antisense strand. In addition, 979 papaya genes targeted by the most abundant 1000 PLDMV-GFP vsiRNAs were predicted and annotated using GO and KEGG classification. Results suggest that vsiRNAs play key roles in PLDMV-papaya interactions. These data on the characterization of PLDMV-GFP vsiRNAs will help to provide insight into the function of vsiRNAs and their host target regulation patterns.


Asunto(s)
Carica/virología , Potyvirus/aislamiento & purificación , ARN Interferente Pequeño/genética , ARN Viral/genética , Carica/genética , Carica/crecimiento & desarrollo , Genoma Viral/genética , Proteínas Fluorescentes Verdes/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/virología , Potyvirus/genética , Potyvirus/patogenicidad , Interferencia de ARN
6.
Molecules ; 23(11)2018 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-30400564

RESUMEN

Mango (Mangifera indica L.) is abundant in proanthocyanidins (PAs) that are important for human health and plant response to abiotic stresses. However, the molecular mechanisms involved in PA biosynthesis still need to be elucidated. Anthocyanidin reductase (ANR) catalyzes a key step in PA biosynthesis. In this study, three ANR cDNAs (MiANR1-1,1-2,1-3) were isolated from mango, and expressed in Escherichia coli. In vitro enzyme assay showed MiANR proteins convert cyanidin to their corresponding flavan-3-ols, such as (-)-catechin and (-)-epicatechin. Despite high amino acid similarity, the recombinant ANR proteins exhibited differences in enzyme kinetics and cosubstrate preference. MiANR1-2 and MiANR1-3 have the same optimum pH of 4.0 in citrate buffer, while the optimum pH for MiANR1-1 is pH 3.0 in phosphate buffer. MiANR1-1 does not use either NADPH or NADH as co-substrate while MiANR1-2/1-3 use only NADPH as co-substrate. MiANR1-2 has the highest Km and Vmax for cyanidin, followed by MiANR1-3 and MiANR1-1. The overexpression of MiANRs in ban mutant reconstructed the biosynthetic pathway of PAs in the seed coat. These data demonstrate MiANRs can form the ANR pathway, leading to the formation of two types of isomeric flavan-3-ols and PAs in mango.


Asunto(s)
Mangifera/enzimología , NADH NADPH Oxidorreductasas/química , NADH NADPH Oxidorreductasas/metabolismo , Secuencia de Aminoácidos , Antocianinas/metabolismo , Fenómenos Químicos , Clonación Molecular , Activación Enzimática , Expresión Génica , Concentración de Iones de Hidrógeno , Cinética , Mangifera/clasificación , Mangifera/genética , Redes y Vías Metabólicas , Mutación , NADH NADPH Oxidorreductasas/genética , Filogenia , Proteínas Recombinantes , Análisis Espectral , Temperatura
7.
Virus Genes ; 50(1): 97-103, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25416301

RESUMEN

The interaction of papaya eukaryotic translation initiation factor 3 subunit G (CpeIF3G) with Papaya ringspot virus (PRSV) NIa-Pro was validated using a bimolecular fluorescence complementation assay in papaya protoplasts based on the previous yeast two-hybrid assay results. The C-terminal (residues 133-239) fragment of PRSV NIa-Pro and the central domain (residues 59-167) of CpeIF3G were required for effective interaction between NIa-Pro and CpeIF3G as shown by a Sos recruitment yeast two-hybrid system with several deletion mutants of NIa-Pro and CpeIF3G. The central domain of CpeIF3G, which contains a C2HC-type zinc finger motif, is required to bind to other eIFs of the translational machinery. In addition, quantitative real-time reverse transcription PCR assay confirmed that PRSV infection leads to a 2- to 4.5-fold up-regulation of CpeIF3G mRNA in papaya. Plant eIF3G is involved in various stress response by enhancing the translation of resistance-related proteins. It is proposed that the NIa-Pro-CpeIF3G interaction may impair translation preinitiation complex assembly of defense proteins and interfere with host defense.


Asunto(s)
Carica/virología , Endopeptidasas/metabolismo , Factor 3 de Iniciación Eucariótica/metabolismo , Interacciones Huésped-Patógeno , Potyvirus/enzimología , Proteínas Virales/metabolismo , Análisis Mutacional de ADN , Iniciación de la Cadena Peptídica Traduccional , Unión Proteica , Mapeo de Interacción de Proteínas , Técnicas del Sistema de Dos Híbridos
8.
Plant Commun ; 4(2): 100471, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36352791

RESUMEN

Plant expression vectors are essential tools for gene functional analysis and molecular plant breeding. The gene of interest is transferred to the vector by molecular cloning technology. Nimble Cloning is a newly developed molecular cloning method with the advantages of simplicity, efficiency, and standardization. In this study, we developed a "pNC" vector system that contains 55 Nimble Cloning-compatible vectors for functional analysis of genes in plants. These vectors contain the NC frame flanked by unique adapters for one-step and standardized Nimble Cloning. We demonstrate that the pNC vectors are convenient and effective for the functional analysis of plant genes, including the study of gene ectopic expression, protein subcellular localization, protein-protein interaction, gene silencing (RNAi), virus-induced gene silencing, promoter activity, and CRISPR-Cas9-mediated genome editing. The "pNC" vector system represents a high-throughput toolkit that can facilitate the large-scale analysis of plant functional genomics.


Asunto(s)
Genes de Plantas , Plantas , Plantas/genética , Clonación Molecular , Edición Génica/métodos , Interferencia de ARN
9.
Plant Methods ; 19(1): 78, 2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37537660

RESUMEN

BACKGROUND: Plant virus vectors designed for virus-mediated protein overexpression (VOX), virus-induced gene silencing (VIGS), and genome editing (VIGE) provide rapid and cost-effective tools for functional genomics studies, biotechnology applications and genome modification in plants. We previously reported that a cassava common mosaic virus (CsCMV, genus Potexvirus)-based VIGS vector was used for rapid gene function analysis in cassava. However, there are no VOX and VIGE vectors available in cassava. RESULTS: In this study, we developed an efficient VOX vector (CsCMV2-NC) for cassava by modifying the CsCMV-based VIGS vector. Specifically, the length of the duplicated putative subgenomic promoter (SGP1) of the CsCMV CP gene was increased to improve heterologous protein expression in cassava plants. The modified CsCMV2-NC-based VOX vector was engineered to express genes encoding green fluorescent protein (GFP), bacterial phytoene synthase (crtB), and Xanthomonas axonopodis pv. manihotis (Xam) type III effector XopAO1 for viral infection tracking, carotenoid biofortification and Xam virulence effector identification in cassava. In addition, we used CsCMV2-NC to deliver single guide RNAs (gMePDS1/2) targeting two loci of the cassava phytoene desaturase gene (MePDS) in Cas9-overexpressing transgenic cassava lines. The CsCMV-gMePDS1/2 efficiently induced deletion mutations of the targeted MePDS with the albino phenotypes in systemically infected cassava leaves. CONCLUSIONS: Our results provide a useful tool for rapid and efficient heterologous protein expression and guide RNA delivery in cassava. This expands the potential applications of CsCMV-based vector in gene function studies, biotechnology research, and precision breeding for cassava.

10.
Hortic Res ; 8(1): 144, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34193861

RESUMEN

Papaya (Carica papaya L.) is regarded as an excellent model for genomic studies of tropical trees because of its short generation time and its small genome that has been sequenced. However, functional genomic studies in papaya depend on laborious genetic transformations because no rapid tools exist for this species. Here, we developed a highly efficient virus-induced gene silencing (VIGS) vector for use in papaya by modifying an artificially attenuated infectious clone of papaya leaf distortion mosaic virus (PLDMV; genus: Potyvirus), PLDMV-E, into a stable Nimble Cloning (NC)-based PLDMV vector, pPLDMV-NC, in Escherichia coli. The target fragments for gene silencing can easily be cloned into pPLDMV-NC without multiple digestion and ligation steps. Using this PLDMV VIGS system, we silenced and characterized five endogenous genes in papaya, including two common VIGS marker genes, namely, phytoene desaturase, Mg-chelatase H subunit, putative GIBBERELLIN (GA)-INSENSITIVE DWARF1A and 1B encoding GA receptors; and the cytochrome P450 gene CYP83B1, which encodes a key enzyme involved in benzylglucosinolate biosynthesis. The results demonstrate that our newly developed PLDMV VIGS vector is a rapid and convenient tool for functional genomic studies in papaya.

11.
Front Microbiol ; 12: 755156, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34733264

RESUMEN

Previously, our group characterized two closely related viruses from Areca catechu, areca palm necrotic ringspot virus (ANRSV) and areca palm necrotic spindle-spot virus (ANSSV). These two viruses share a distinct genomic organization of leader proteases and represent the only two species of the newly established genus Arepavirus of the family Potyviridae. The biological features of the two viruses are largely unknown. In this study, we investigated the pathological properties, functional compatibility of viral elements, and interspecies interactions in the model plant, Nicotiana benthamiana. Using a newly obtained infectious clone of ANRSV, we showed that this virus induces more severe symptoms compared with ANSSV and that this is related to a rapid virus multiplication in planta. A series of hybrid viruses were constructed via the substitution of multiple elements in the ANRSV infectious clone with the counterparts of ANSSV. The replacement of either 5'-UTR-HCPro1-HCPro2 or CI effectively supported replication and systemic infection of ANRSV, whereas individual substitution of P3-7K, 9K-NIa, and NIb-CP-3'-UTR abolished viral infectivity. Finally, we demonstrated that ANRSV confers effective exclusion of ANSSV both in coinfection and super-infection assays. These results advance our understanding of fundamental aspects of these two distinct but closely related arepaviruses.

12.
Plant Methods ; 17(1): 74, 2021 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-34247636

RESUMEN

BACKGROUND: Cassava is an important crop for food security and industry in the least-developed and developing countries. The completion of the cassava genome sequence and identification of large numbers of candidate genes by next-generation sequencing provide extensive resources for cassava molecular breeding and increase the need for rapid and efficient gene function analysis systems in cassava. Several plant virus-induced gene silencing (VIGS) systems have been developed as reverse genetic tools for rapid gene function analysis in cassava. However, these VIGS vectors could cause severe viral symptoms or inefficient gene silencing. RESULTS: In this study, we constructed agroinfection-compatible infectious cDNA clones of cassava common mosaic virus isolate CM (CsCMV-CM, genus Potexvirus, family Alphaflexiviridae) that causes systemic infection with mild symptoms in cassava. CsCMV-CM was then modified to a viral vector carrying the Nimble cloning frame, which facilitates the rapid and high-throughput cloning of silencing fragments into the viral genome. The CsCMV-based vector successfully silenced phytoene desaturase (PDS) and magnesium chelatase subunit I (ChlI) in different cassava varieties and Nicotiana benthamiana. The silencing of the ChlI gene could persist for more than two months. CONCLUSIONS: This CsCMV-based VIGS system provides a new tool for rapid and efficient gene function studies in cassava.

13.
J Virol Methods ; 281: 113795, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31809783

RESUMEN

Two reverse-transcription loop-mediated isothermal amplification (RT-LAMP) assays were developed for the detection of areca palm necrotic ringspot virus (ANRSV) and areca palm necrotic spindle-spot virus (ANSSV), respectively. These two emerging viruses both induce necrotic symptoms in areca palms. The coat protein (CP) gene of ANRSV and the 9 K gene of ANSSV were used to design the respective RT-LAMP primers for the assays. Each set of four primers designed for each of these viruses was found to be highly specific in the detection of the respective targeted virus. The optimal incubation conditions for the RT-LAMP assays were 63 °C for 40 min for ANRSV and at 61 °C for 40 min for ANSSV. The sensitivity of the RT-LAMP method for each of these viruses was 10-fold greater than that of the corresponding conventional reverse-transcription polymerase chain reaction (RT-PCR). The RT-LAMP assays may be useful for the rapid early detection of ANSSV and ANRSV in commercial areca palm production.


Asunto(s)
Areca/virología , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Enfermedades de las Plantas/virología , Virus/clasificación , Cartilla de ADN/genética , ARN Viral/genética , Transcripción Reversa , Sensibilidad y Especificidad , Virus/aislamiento & purificación
14.
Artículo en Inglés | MEDLINE | ID: mdl-32010678

RESUMEN

Molecular cloning is one of the most fundamental technologies in molecular biology, and has been critical for driving biotechnological advances. In this study, we have developed a novel method for standardized molecular cloning. The cloning technique known as "Nimble Cloning" uses the restriction enzyme, SfiI, in combination with the T5 exonuclease, to linearize the vector and generate 3'-overhangs simultaneously. Both PCR products and plasmids can be used for the cloning reaction in the Nimble Cloning system. The cloning system is highly efficient, suitable for gene expression in both prokaryotic and eukaryotic expression systems, and enables the reuse of DNA fragments or plasmid entry clones. Nimble Cloning is applicable for the cloning of single or multiple fragments, as well as multi-site cloning. Due also to its simplicity and versatility, the cloning method has great potential for the modular assembly of DNA constructs.

15.
Virology ; 510: 99-103, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28715654

RESUMEN

A novel Rhizobium radiobacter (synonym Agrobacterium tumefaciens)-mediated approach was developed to generate stable infectious clones of plant viruses. This method uses R. radiobacter for both cloning and inoculation of infectious clones, bypassing the requirement of cloning in E. coli to avoid the instability. Only three steps are included in this method: (i) construct viral genome-encoding plasmids in vitro by one-step Gibson assembly; (ii) transform the assembled DNA products into R. radiobacter; (iii) inoculate plants with the R. radiobacter clones containing the viral genome. Stable infectious clones were obtained from two potyviruses papaya ringspot virus (PRSV) and papaya leaf distortion mosaic virus (PLDMV) using this method, whereas attempts utilizing "classical" E. coli cloning system failed repeatedly. This method is simple and efficient, and is promising for a wide application in generation of infectious clones of plant virus, especially for those which are instable in E. coli.


Asunto(s)
Agrobacterium tumefaciens/genética , Clonación Molecular , Potyvirus/genética , Genética Inversa , Virología/métodos , Plantas/virología , Transformación Genética
16.
Viruses ; 7(12): 6241-50, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26633465

RESUMEN

Papaya leaf distortion mosaic virus (PLDMV) is becoming a threat to papaya and transgenic papaya resistant to the related pathogen, papaya ringspot virus (PRSV). The generation of infectious viral clones is an essential step for reverse-genetics studies of viral gene function and cross-protection. In this study, a sequence- and ligation-independent cloning system, the In-Fusion(®) Cloning Kit (Clontech, Mountain View, CA, USA), was used to construct intron-less or intron-containing full-length cDNA clones of the isolate PLDMV-DF, with the simultaneous scarless assembly of multiple viral and intron fragments into a plasmid vector in a single reaction. The intron-containing full-length cDNA clone of PLDMV-DF was stably propagated in Escherichia coli. In vitro intron-containing transcripts were processed and spliced into biologically active intron-less transcripts following mechanical inoculation and then initiated systemic infections in Carica papaya L. seedlings, which developed similar symptoms to those caused by the wild-type virus. However, no infectivity was detected when the plants were inoculated with RNA transcripts from the intron-less construct because the instability of the viral cDNA clone in bacterial cells caused a non-sense or deletion mutation of the genomic sequence of PLDMV-DF. To our knowledge, this is the first report of the construction of an infectious full-length cDNA clone of PLDMV and the splicing of intron-containing transcripts following mechanical inoculation. In-Fusion cloning shortens the construction time from months to days. Therefore, it is a faster, more flexible, and more efficient method than the traditional multistep restriction enzyme-mediated subcloning procedure.


Asunto(s)
Carica/virología , ADN Complementario/genética , ADN Viral/genética , Enfermedades de las Plantas/virología , Potyvirus/genética , Potyvirus/fisiología , Genética Inversa/métodos , Clonación Molecular , Escherichia coli/genética , Vectores Genéticos , Genoma Viral , Inestabilidad Genómica , Plásmidos
17.
Genome Announc ; 3(5)2015 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-26358610

RESUMEN

The complete genome sequence (10,326 nucleotides) of a papaya ringspot virus isolate infecting genetically modified papaya in Hainan Island of China was determined through reverse transcription (RT)-PCR. The virus shares 92% nucleotide sequence identity with the isolate that is unable to infect PRSV-resistant transgenic papaya.

18.
J Virol Methods ; 195: 174-9, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24100065

RESUMEN

Papaya leaf distortion mosaic virus (PLDMV) can infect transgenic papaya resistant to a related pathogen, Papaya ringspot virus (PRSV), posing a substantial threat to papaya production in China. Current detection methods, however, are unable to be used for rapid detection in the field. Here, a reverse-transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed for the detection of PLDMV, using a set of four RT-LAMP primers designed based on the conserved sequence of PLDMV CP. The RT-LAMP method detected specifically PLDMV and was highly sensitive, with a detection limit of 1.32×10(-6) µg of total RNA per reaction. Indeed, the reaction was 10 times more sensitive than one-step RT-PCR, while also requiring significantly less time and equipment. The effectiveness of RT-LAMP and one-step RT-PCR in detecting the virus were compared using 90 field samples of non-transgenic papaya and 90 field samples of commercialized PRSV-resistant transgenic papaya from Hainan Island. None of the non-transgenic papaya tested positive for PLDMV using either method. In contrast, 19 of the commercialized PRSV-resistant transgenic papaya samples tested positive by RT-LAMP assay, and 6 of those tested negative by RT-PCR. Therefore, the PLDMV-specific RT-LAMP is a simple, rapid, sensitive, and cost-effective tool in the field diagnosis and control of PLDMV.


Asunto(s)
Carica/virología , Técnicas de Amplificación de Ácido Nucleico/métodos , Enfermedades de las Plantas/virología , Potyvirus/aislamiento & purificación , Virología/métodos , China , Análisis Costo-Beneficio , Cartilla de ADN/genética , Técnicas de Amplificación de Ácido Nucleico/economía , Potyvirus/genética , Transcripción Reversa , Sensibilidad y Especificidad , Factores de Tiempo , Virología/economía
19.
Viruses ; 6(10): 3893-906, 2014 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-25337891

RESUMEN

Papaya ringspot virus (PRSV), Papaya leaf distortion mosaic virus (PLDMV), and Papaya mosaic virus (PapMV) produce similar symptoms in papaya. Each threatens commercial production of papaya on Hainan Island, China. In this study, a multiplex reverse transcription PCR assay was developed to detect simultaneously these three viruses by screening combinations of mixed primer pairs and optimizing the multiplex RT-PCR reaction conditions. A mixture of three specific primer pairs was used to amplify three distinct fragments of 613 bp from the P3 gene of PRSV, 355 bp from the CP gene of PLDMV, and 205 bp from the CP gene of PapMV, demonstrating the assay's specificity. The sensitivity of the multiplex RT-PCR was evaluated by showing plasmids containing each of the viral target genes with 1.44 × 103, 1.79 × 103, and 1.91 × 102 copies for the three viruses could be detected successfully. The multiplex RT-PCR was applied successfully for detection of three viruses from 341 field samples collected from 18 counties of Hainan Island, China. Rates of single infections were 186/341 (54.5%), 93/341 (27.3%), and 3/341 (0.9%), for PRSV, PLDMV, and PapMV, respectively; 59/341 (17.3%) of the samples were co-infected with PRSV and PLDMV, which is the first time being reported in Hainan Island. This multiplex RT-PCR assay is a simple, rapid, sensitive, and cost-effective method for detecting multiple viruses in papaya and can be used for routine molecular diagnosis and epidemiological studies in papaya.


Asunto(s)
Carica/virología , Reacción en Cadena de la Polimerasa Multiplex/métodos , Enfermedades de las Plantas/virología , Potexvirus/aislamiento & purificación , Potyvirus/aislamiento & purificación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Cartilla de ADN/genética , Reacción en Cadena de la Polimerasa Multiplex/normas , Potexvirus/genética , Potyvirus/genética , ARN Viral/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/normas , Análisis de Secuencia de ARN
20.
J Virol Methods ; 204: 93-100, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24769198

RESUMEN

Papaya ringspot virus (PRSV) and Papaya leaf distortion mosaic virus (PLDMV), which causes disease symptoms similar to PRSV, threaten commercial production of both non-transgenic-papaya and PRSV-resistant transgenic papaya in China. A reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay to detect PLDMV was developed previously. In this study, the development of another RT-LAMP assay to distinguish among transgenic, PRSV-infected and PLDMV-infected papaya by detection of PRSV is reported. A set of four RT-LAMP primers was designed based on the highly conserved region of the P3 gene of PRSV. The RT-LAMP method was specific and sensitive in detecting PRSV, with a detection limit of 1.15×10(-6)µg of total RNA per reaction. Indeed, the reaction was 10 times more sensitive than one-step RT-PCR. Field application of the RT-LAMP assay demonstrated that samples positive for PRSV were detected only in non-transgenic papaya, whereas samples positive for PLDMV were detected only in commercialized PRSV-resistant transgenic papaya. This suggests that PRSV remains the major limiting factor for non-transgenic-papaya production, and the emergence of PLDMV threatens the commercial transgenic cultivar in China. However, this study, combined with the earlier development of an RT-LAMP assay for PLDMV, will provide a rapid, sensitive and cost-effective diagnostic power to distinguish virus infections in papaya.


Asunto(s)
Carica/virología , Técnicas de Amplificación de Ácido Nucleico/métodos , Potyvirus/clasificación , Potyvirus/aislamiento & purificación , Transcripción Reversa , Virosis/virología , China , Análisis Costo-Beneficio , Cartilla de ADN/genética , Técnicas de Amplificación de Ácido Nucleico/economía , Potyvirus/genética , ARN Viral/genética , Sensibilidad y Especificidad , Tiempo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA