Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Carcinog ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39150096

RESUMEN

C1R has been identified to have a distinct function in cutaneous squamous cell carcinoma that goes beyond its role in the complement system. However, it is currently unknown whether C1R is involved in the progression of hepatocellular carcinoma (HCC). HCC tissues were used to examine C1R expression in relation to clinical and pathological factors. Malignant characteristics of HCC cells were assessed through in vitro and in vivo experiments. The mechanism underlying the role of C1R in HCC was explored through RNA-seq, methylation-specific PCR, immuno-precipitation, and dual-luciferase reporter assays. This study found that the expression of C1R decreased as the malignancy of HCC increased and was associated with poor prognosis. C1R promoter was highly methylated through DNMT1 and DNMT3a, resulting in a decrease in C1R expression. Downregulation of C1R expression resulted in heightened malignant characteristics of HCC cells through the activation of HIF-1α-mediated glycolysis. Additionally, decreased C1R expression was found to promote xenograft tumor formation. We found that C-reactive protein (CRP) binds to C1R, and the free CRP activates the NF-κB signaling pathway, which in turn boosts the expression of HIF-1α. This increase in HIF-1α leads to higher glycolysis levels, ultimately promoting aggressive behavior in HCC. Methylation of the C1R promoter region results in the downregulation of C1R expression in HCC. C1R inhibits aggressive behavior in HCC in vitro and in vivo by inhibiting HIF-1α-regulated glycolysis. These findings indicate that C1R acts as a tumor suppressor gene during HCC progression, opening up new possibilities for innovative therapeutic approaches.

2.
Angiology ; : 33197241273348, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39162301

RESUMEN

To explore the effect of long non-coding RNA cancer susceptibility 19 (lncRNA CASC19) on the activity, apoptosis, and oxidative stress response of cardiomyocytes, so as to assess the clinical relevance and molecular mechanism of CASC19 in myocardial infarction (MI). CASC19 level was determined by using real-time quantitative polymerase chain reaction (RT-qPCR). MI model was constructed using hypoxia induction, and rat cardiomyocytes H9c2 were divided into control group, MI group, MI small interference negative control (MI-si-NC) group, MI-si-CASC19 group, MI-si-CASC19+microRNA-NC (miR-NC) group, and MI-si-CASC19+miR-218-5p inhibitor group. Tetramethylazolium salt colorimetric method and flow cytometry were used to evaluate cell activity and apoptotic capacity. Cellular oxidative stress was evaluated using malondialdehyde and superoxide dismutase kits. The relationship between CASC19 and miR-218-5p was confirmed by using dual-luciferase activity assay. CASC19 levels were enhanced in MI patients and hypoxia-induced cardiomyocytes. Downregulating CASC19 promoted the proliferation, while suppressed apoptosis and oxidative stress in the MI cell model. Moreover, low expression of miR-218-5p reversed the promotion of proliferation and inhibition of apoptosis and oxidative stress in MI cell models by silencing CASC19. Briefly, CASC19 may serve as a diagnostic marker for MI by sponging miR-218-5p to inhibit apoptosis and oxidative stress in cardiomyocytes and promote cell survival.

3.
Neuroreport ; 34(17): 834-844, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37938926

RESUMEN

This study aimed to investigate whether the inhibition of the TLR4/NF-κB pathway can promote lipopolysaccharide (LPS)-induced microglial polarization from the M1 to M2 phenotype, and thus exert neuroprotection. LPS-induced microglia were used as a model for inflammation in vitro. TLR4-specific inhibitor resatorvid (TAK-242) and NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC) were used to verify the effect of the TLR4/NF-κB pathway on microglia activation and polarization. Cell proliferation was measured by cell counting, and nitric oxide (NO) and reactive oxygen species (ROS) release was measured using the Griess reagent and ROS kit, respectively. Immunofluorescence and RT-qPCR analyses were used to detect the expression of microglial activation markers, phenotypic markers, related pathway molecules, and inflammatory factors. TLR4 specific inhibitor TAK-242 and NF-κB inhibitor PDTC alleviated LPS-induced microglia over-activation by inhibiting the TLR4/NF-κB pathway, and reduced LPS-stimulated cell proliferation and the release of NO, ROS, TNF-a, and IL-6 and IL-1ß. Meanwhile, TAK-242 and PDTC promoted LPS-induced polarization of microglia from M1 to M2 phenotype, decreased the expression of microglial activation marker Iba1 and M1 phenotypic markers (TNF-a and CD86), and increased the expression of M2 phenotypic markers (Arg-1 and CD206). The mechanism may be related to inhibiting the TLR4/NF-κB pathway. The inhibition of the TLR4/NF-κB pathway can promote LPS-induced polarization of BV2 microglia from M1 phenotype to M2 phenotype.


Asunto(s)
Lipopolisacáridos , FN-kappa B , FN-kappa B/metabolismo , Lipopolisacáridos/farmacología , Microglía , Receptor Toll-Like 4/metabolismo , Transducción de Señal , Especies Reactivas de Oxígeno/metabolismo , Fenotipo
4.
Anal Cell Pathol (Amst) ; 2022: 4588999, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36600931

RESUMEN

The effect of Shenfu injection on brain injury after cardiac arrest (CA) and cardiopulmonary resuscitation (CPR) along with the underlying mechanism of axonal regeneration was explored. CA/CPR model in rats was established for subsequent experiments. A total of 160 rats were randomly divided into sham group, model group, conventional western medicine (CWM) group, Shenfu group, and antagonist group (n = 32 per group). After 3 hours, 24 hours, 3 days, and 7 days of drug administration, the modified Neurological Severity Score tests were performed. The ultrastructure of the brain and hippocampus was observed by electron microscopy. Real-time quantitative polymerase chain reaction (PCR), western blotting, and immunohistochemistry were used to detect Nogo receptor (NgR) expression in the hippocampus and cerebral cortex, and Nogo-NgR expression in CA/CPR model. Neurological deficits in the model group were severe at 3 hours, 24 hours, 3 days, and 7 days after the recovery of natural circulation, whereas the neurological deficits in CWM, antagonist, and Shenfu group were relatively mild. The ultrastructure of neuronal cells in Shenfu group had relatively complete cell membranes and more vesicles than those in the model group. The results of PCR and western blotting showed lower messenger ribonucleic acid and protein expression of NgR in Shenfu group than the model group and CWM group. Immunohistochemical examination indicated a reduction of Nogo-NgR expression in Shenfu group and antagonist group. Our results suggested that Shenfu injection reduced brain injury by attenuating Nogo-NgR signaling pathway and promoting axonal regeneration.


Asunto(s)
Lesiones Encefálicas , Paro Cardíaco , Ratas , Animales , Receptores Nogo , Ratas Sprague-Dawley , Proteínas de la Mielina/análisis , Proteínas de la Mielina/metabolismo , Proteínas Nogo , Receptores de Superficie Celular/metabolismo , Receptor Nogo 1 , Proteínas Ligadas a GPI/metabolismo , Lesiones Encefálicas/tratamiento farmacológico , Lesiones Encefálicas/metabolismo , Paro Cardíaco/complicaciones , Paro Cardíaco/tratamiento farmacológico
5.
J Comput Biol ; 19(3): 251-60, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22401589

RESUMEN

With the ever-increasing pace of genome sequencing, there is a great need for fast and accurate computational tools to automatically identify genes in these genomes. Although great progress has been made in the development of gene-finding algorithms during the past decades, there is still room for further improvement. In particular, the issue of recognizing short exons in eukaryotes is still not solved satisfactorily. This article is devoted to assessing various linear and kernel-based classification algorithms and selecting the best combination of Z-curve features for further improvement of the issue. Eight state-of-the-art linear and kernel-based supervised pattern recognition techniques were used to identify the short (21-192 bp) coding sequences of human genes. By measuring the prediction accuracy, the tradeoff between sensitivity and specificity and the time consumption, partial least squares (PLS) and kernel partial least squares (KPLS) algorithms were verified to be the most optimal linear and kernel-based classifiers, respectively. A surprising result was that, by making good use of the interpretability of the PLS and the Z-curve methods, 93 Z-curve features were proved to be the best selective combination. Using them, the average recognition accuracy was improved as high as 7.7% by means of KPLS when compared with what was obtained by the Fisher discriminant analysis using 189 Z-curve variables (Gao and Zhang, 2004 ). The used codes are freely available from the following approaches (implemented in MATLAB and supported on Linux and MS Windows): (1) SVM: http://www.support-vector-machines.org/SVM_soft.html. (2) GP: http://www.gaussianprocess.org. (3) KPLS and KFDA: Taylor, J.S., and Cristianini, N. 2004. Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge, UK. (4) PLS: Wise, B.M., and Gallagher, N.B. 2011. PLS-Toolbox for use with MATLAB: ver 1.5.2. Eigenvector Technologies, Manson, WA. Supplementary Material for this article is available at www.liebertonline.com/cmb.


Asunto(s)
Sistemas de Lectura Abierta , Máquina de Vectores de Soporte , Algoritmos , Simulación por Computador , Bases de Datos Genéticas , Humanos , Análisis de los Mínimos Cuadrados , Modelos Genéticos , Análisis de Secuencia de ADN/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA