Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
EMBO J ; 41(18): e109353, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35920020

RESUMEN

Macrophage polarization is a process whereby macrophages acquire distinct effector states (M1 or M2) to carry out multiple and sometimes opposite functions. We show here that translational reprogramming occurs during macrophage polarization and that this relies on the Elongator complex subunit Elp3, an enzyme that modifies the wobble uridine base U34 in cytosolic tRNAs. Elp3 expression is downregulated by classical M1-activating signals in myeloid cells, where it limits the production of pro-inflammatory cytokines via FoxO1 phosphorylation, and attenuates experimental colitis in mice. In contrast, alternative M2-activating signals upregulate Elp3 expression through a PI3K- and STAT6-dependent signaling pathway. The metabolic reprogramming linked to M2 macrophage polarization relies on Elp3 and the translation of multiple candidates, including the mitochondrial ribosome large subunit proteins Mrpl3, Mrpl13, and Mrpl47. By promoting translation of its activator Ric8b in a codon-dependent manner, Elp3 also regulates mTORC2 activation. Elp3 expression in myeloid cells further promotes Wnt-driven tumor initiation in the intestine by maintaining a pool of tumor-associated macrophages exhibiting M2 features. Collectively, our data establish a functional link between tRNA modifications, mTORC2 activation, and macrophage polarization.


Asunto(s)
Histona Acetiltransferasas , Activación de Macrófagos , Transducción de Señal , Animales , Codón/metabolismo , Histona Acetiltransferasas/genética , Activación de Macrófagos/genética , Macrófagos/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Ratones
2.
Nat Cell Biol ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849541

RESUMEN

Transfer RNA dynamics contribute to cancer development through regulation of codon-specific messenger RNA translation. Specific aminoacyl-tRNA synthetases can either promote or suppress tumourigenesis. Here we show that valine aminoacyl-tRNA synthetase (VARS) is a key player in the codon-biased translation reprogramming induced by resistance to targeted (MAPK) therapy in melanoma. The proteome rewiring in patient-derived MAPK therapy-resistant melanoma is biased towards the usage of valine and coincides with the upregulation of valine cognate tRNAs and of VARS expression and activity. Strikingly, VARS knockdown re-sensitizes MAPK-therapy-resistant patient-derived melanoma in vitro and in vivo. Mechanistically, VARS regulates the messenger RNA translation of valine-enriched transcripts, among which hydroxyacyl-CoA dehydrogenase mRNA encodes for a key enzyme in fatty acid oxidation. Resistant melanoma cultures rely on fatty acid oxidation and hydroxyacyl-CoA dehydrogenase for their survival upon MAPK treatment. Together, our data demonstrate that VARS may represent an attractive therapeutic target for the treatment of therapy-resistant melanoma.

3.
Methods Mol Biol ; 2431: 207-224, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35412278

RESUMEN

Axonal transport is used by neurons to distribute mRNAs, proteins, and organelles to their peripheral compartments in order to sustain their structural and functional integrity. Cargoes are transported along the microtubule (MT) network whose post-translational modifications influence transport dynamics. Here, we describe methods to modulate MT acetylation and record its impact on axonal transport in cultured mouse cortical projection neurons as well as in motoneurons of Drosophila melanogaster third-instar larvae. Specifically, we provide a step-by step procedure to reduce the level of MT acetylation and to record and analyze the transport of dye-labeled organelles in projection neuron axons cultured in microfluidic chambers. In addition, we describe the method to record and analyze GFP-tagged mitochondria transport along the motoneuron axons of transgenic Drosophila melanogaster third-instar larvae.


Asunto(s)
Transporte Axonal , Drosophila melanogaster , Acetilación , Animales , Transporte Axonal/fisiología , Axones/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Larva , Ratones , Microtúbulos/metabolismo , Neuronas Motoras , Procesamiento Proteico-Postraduccional
4.
Trends Cell Biol ; 31(5): 372-386, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33526339

RESUMEN

The axonal microtubules (MTs) support long-distance transport of cargoes that are dispatched to distinct cellular subcompartments. Among them, mRNAs are directly transported in membraneless ribonucleoprotein (RNP) granules that, together with ribosomes, can also hitchhike on fast-moving membrane-bound organelles for accurate transport along MTs. These organelles serve as platforms for mRNA translation, thus generating axonal foci of newly synthesized proteins. Local translation along axons not only supports MT network integrity but also modulates the processivity and function of molecular motors to allow proper trafficking of cargoes along MTs. Thus, identifying the mechanisms that coordinate axonal transport with local protein synthesis will shed new light on the processes underlying axon development and maintenance, whose deregulation often contribute to neurological disorders.


Asunto(s)
Axones/metabolismo , Neuronas/metabolismo , Transporte de ARN , ARN Mensajero/metabolismo , Animales , Humanos , Microtúbulos/metabolismo , Modelos Neurológicos , Orgánulos/metabolismo
5.
Cells ; 10(11)2021 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34831056

RESUMEN

Alzheimer's disease (AD) treatment is constrained due to the inability of peripherally administered therapeutic molecules to cross the blood-brain barrier. Encapsulated cell biodelivery (ECB) devices, a tissue-targeted approach for local drug release, was previously optimized for human mature nerve growth factor (hmNGF) delivery in AD patients but was found to have reduced hmNGF release over time. To understand the reason behind reduced ECB efficacy, we exposed hmNGF-releasing cells (NGC0211) in vitro to human cerebrospinal fluid (CSF) obtained from Subjective Cognitive Impairment (SCI), Lewy Body Dementia (LBD), and AD patients. Subsequently, we exposed NGC0211 cells directly to AD-related factors like amyloid-ß peptides (Aß40/42) or activated astrocyte-conditioned medium (Aß40/42/IL-1ß/TNFα-treated) and evaluated biochemical stress markers, cell death indicators, cell proliferation marker (Ki67), and hmNGF release. We found that all patients' CSF significantly reduced hmNGF release from NGC0211 cells in vitro. Aß40/42, inflammatory molecules, and activated astrocytes significantly affected NGC0211 cell proliferation without altering hmNGF release or other parameters important for essential functions of the NGC0211 cells. Long-term constant cell proliferation within the ECB device is critically important to maintain a steady cell population needed for stable mNGF release. These data show hampered proliferation of NGC0211 cells, which may lead to a decline of the NGC0211 cell population in ECBs, thereby reducing hmNGF release. Our study highlights the need for future studies to strengthen ECB-mediated long-term drug delivery approaches.


Asunto(s)
Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Astrocitos/metabolismo , Células Inmovilizadas/citología , Factor de Crecimiento Nervioso/metabolismo , Enfermedad de Alzheimer/líquido cefalorraquídeo , Línea Celular , Proliferación Celular , Disfunción Cognitiva/líquido cefalorraquídeo , Medios de Cultivo Condicionados/farmacología , Humanos , Enfermedad por Cuerpos de Lewy/líquido cefalorraquídeo , Péptidos/metabolismo , Estrés Fisiológico
6.
Nat Commun ; 12(1): 5878, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34620845

RESUMEN

Microtubule (MT)-based transport is an evolutionary conserved process finely tuned by posttranslational modifications. Among them, α-tubulin acetylation, primarily catalyzed by a vesicular pool of α-tubulin N-acetyltransferase 1 (Atat1), promotes the recruitment and processivity of molecular motors along MT tracks. However, the mechanism that controls Atat1 activity remains poorly understood. Here, we show that ATP-citrate lyase (Acly) is enriched in vesicles and provide Acetyl-Coenzyme-A (Acetyl-CoA) to Atat1. In addition, we showed that Acly expression is reduced upon loss of Elongator activity, further connecting Elongator to Atat1 in a pathway regulating α-tubulin acetylation and MT-dependent transport in projection neurons, across species. Remarkably, comparable defects occur in fibroblasts from Familial Dysautonomia (FD) patients bearing an autosomal recessive mutation in the gene coding for the Elongator subunit ELP1. Our data may thus shine light on the pathophysiological mechanisms underlying FD.


Asunto(s)
ATP Citrato (pro-S)-Liasa/metabolismo , Transporte Axonal/fisiología , ATP Citrato (pro-S)-Liasa/genética , Acetilcoenzima A/metabolismo , Acetilación , Acetiltransferasas/genética , Animales , Transporte Axonal/genética , Drosophila melanogaster , Disautonomía Familiar/metabolismo , Femenino , Fibroblastos/metabolismo , Humanos , Larva , Masculino , Ratones , Microtúbulos/metabolismo , Procesamiento Proteico-Postraduccional , Tubulina (Proteína)/metabolismo
7.
STAR Protoc ; 1(3): 100131, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33377025

RESUMEN

Axonal transport is a physiological process adopted by neurons to transport organelles, proteins, and other molecules along their axonal projections. Here, we describe a step-by-step protocol to record the dynamics of axonal transport along the projections of callosal neurons by combining the in utero electroporation technique with the preparation of postnatal organotypic cortical slices. This ex vivo protocol has been developed to investigate axonal transport in a physiological setting closely reproducing the in vivo environment. For complete details on the use and execution of this protocol, please refer to Even et al. (2019).


Asunto(s)
Transporte Axonal/fisiología , Electroporación/métodos , Microinyecciones/métodos , Animales , Axones/metabolismo , Axones/fisiología , Corteza Cerebral/fisiología , Cuerpo Calloso/fisiología , Embrión de Mamíferos/cirugía , Femenino , Ratones , Neuroimagen/métodos , Neuronas/metabolismo , Neuronas/fisiología , Embarazo
8.
Sci Adv ; 5(12): eaax2705, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31897425

RESUMEN

Microtubules are polymerized dimers of α- and ß-tubulin that underlie a broad range of cellular activities. Acetylation of α-tubulin by the acetyltransferase ATAT1 modulates microtubule dynamics and functions in neurons. However, it remains unclear how this enzyme acetylates microtubules over long distances in axons. Here, we show that loss of ATAT1 impairs axonal transport in neurons in vivo, and cell-free motility assays confirm a requirement of α-tubulin acetylation for proper bidirectional vesicular transport. Moreover, we demonstrate that the main cellular pool of ATAT1 is transported at the cytosolic side of neuronal vesicles that are moving along axons. Together, our data suggest that axonal transport of ATAT1-enriched vesicles is the predominant driver of α-tubulin acetylation in axons.


Asunto(s)
Acetiltransferasas/metabolismo , Transporte Axonal/fisiología , Proteínas de Microtúbulos/metabolismo , Microtúbulos/metabolismo , Acetilación , Acetiltransferasas/genética , Animales , Drosophila melanogaster/metabolismo , Femenino , Células HEK293 , Células HeLa , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Larva/fisiología , Locomoción , Masculino , Ratones , Ratones Noqueados , Proteínas de Microtúbulos/genética , Neuronas/metabolismo , Tubulina (Proteína)/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA