Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Curr Res Food Sci ; 5: 1352-1364, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36082140

RESUMEN

Microbial activity is present at every step of the malting process. It is, therefore, critical to manage the grain-associated microbial communities for the production of high-quality malts. This study characterized barley and malt epiphytic microbiota by metabarcoding the internal transcribed spacer (ITS) 2 region and the 16S rRNA gene V1-V4 metabarcodes, respectively. We elucidated the changes in the diversity and the compositional and functional changes of the grain-associated microbiota and inferred the impact of such changes on malting efficiency and premature yeast flocculation (PYF) of the commercial malt end product. Through the malting process, the fungal diversity decreased while bacterial community diversity increased. Lactic acid bacteria (LAB) and some mycotoxin-producing fungi (e.g. Fusarium spp.) were found to be significantly enriched in malts. Most potential fungal pathogens, however, did not change in abundance through the malting process. Fungi (e.g. Aureobasidium, Candida) and bacteria (e.g. LAB, Arthrobacter, Brachybacterium) with the potential to generate organic acids or exhibit high hydrolytic enzymatic activity for degrading the endosperm cell walls and storage proteins were detected in greater abundance in kilned malt, suggesting their contribution to malting efficiency. Bacterial and fungal operational taxonomic units (OTUs) associated with PYF-positive malt were mainly identified as Aureobasidium, Candida, and Leuconostoc, while Pleosporaceae, Steptococcus, and Leucobacter were associated with PYF-negative malt. The ecological networks of the field and steeped barley samples were found to be larger and denser, while that of the malt microbiome was smaller and less connected. A decrease in the proportion of negative interactions through the malting process suggested that malting destabilized the microbial networks. In summary, this study profiled the microbiota of commercial malting barley and malt samples in western Canada; the findings expanded our knowledge in the microbiology of malting while providing potential insights regarding the management of microbial-associated problems, such as PYF, in commercial malting.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA