Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Infect Immun ; 91(2): e0039222, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36722979

RESUMEN

Chlamydia trachomatis is the most common cause of infectious blindness and sexually transmitted bacterial infection globally. C. trachomatis contains a conserved chlamydial plasmid with eight coding sequences. Plasmid-cured Chlamydia strains are attenuated and display reduced infectivity in cell culture and in vivo genital infection of female mice. Mutants that do not express the plasmid-encoded proteins Pgp3, a secreted protein with unknown function, or Pgp4, a putative regulator of pgp3 and other chromosomal loci, display an infectivity defect similar to plasmid-deficient strains. Our objective was to determine the combined and individual contributions of Pgp3 and Pgp4 to this phenotype. Deletion of pgp3 and pgp4 resulted in an infectivity defect detected by competition assay in cell culture and in mice. The pgp3 locus was placed under the control of an anhydrotetracycline-inducible promoter to examine the individual contributions of Pgp3 and Pgp4 to infectivity. Expression of pgp3 was induced 100- to 1,000-fold after anhydrotetracycline administration, regardless of the presence or absence of pgp4. However, secreted Pgp3 was not detected when pgp4 was deleted, confirming a role for Pgp4 in Pgp3 secretion. We discovered that expression of pgp3 or pgp4 alone was insufficient to restore normal infectivity, which required expression of both Pgp3 and Pgp4. These results suggest Pgp3 and Pgp4 are both required for infectivity during C. trachomatis infection. Future studies are required to determine the mechanism by which Pgp3 and Pgp4 influence chlamydial infectivity as well as the potential roles of Pgp4-regulated loci.


Asunto(s)
Infecciones por Chlamydia , Chlamydia trachomatis , Animales , Femenino , Ratones , Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Infecciones por Chlamydia/microbiología , Chlamydia trachomatis/genética , Chlamydia trachomatis/patogenicidad , Plásmidos/genética , Virulencia/genética
2.
PLoS Genet ; 12(9): e1006317, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27662467

RESUMEN

Assembly of kinetochore complexes, involving greater than one hundred proteins, is essential for chromosome segregation and genome stability. Neocentromeres, or new centromeres, occur when kinetochores assemble de novo, at DNA loci not previously associated with kinetochore proteins, and they restore chromosome segregation to chromosomes lacking a functional centromere. Neocentromeres have been observed in a number of diseases and may play an evolutionary role in adaptation or speciation. However, the consequences of neocentromere formation on chromosome missegregation rates, gene expression, and three-dimensional (3D) nuclear structure are not well understood. Here, we used Candida albicans, an organism with small, epigenetically-inherited centromeres, as a model system to study the functions of twenty different neocentromere loci along a single chromosome, chromosome 5. Comparison of neocentromere properties relative to native centromere functions revealed that all twenty neocentromeres mediated chromosome segregation, albeit to different degrees. Some neocentromeres also caused reduced levels of transcription from genes found within the neocentromere region. Furthermore, like native centromeres, neocentromeres clustered in 3D with active/functional centromeres, indicating that formation of a new centromere mediates the reorganization of 3D nuclear architecture. This demonstrates that centromere clustering depends on epigenetically defined function and not on the primary DNA sequence, and that neocentromere function is independent of its distance from the native centromere position. Together, the results show that a neocentromere can form at many loci along a chromosome and can support the assembly of a functional kinetochore that exhibits native centromere functions including chromosome segregation accuracy and centromere clustering within the nucleus.

3.
J Infect Dis ; 216(1): 36-44, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28177502

RESUMEN

Background: Rapid diagnostic tests (RDTs) account for more than two-thirds of malaria diagnoses in Africa. Deletions of the Plasmodium falciparum hrp2 (pfhrp2) gene cause false-negative RDT results and have never been investigated on a national level. Spread of pfhrp2-deleted P. falciparum mutants, resistant to detection by HRP2-based RDTs, would represent a serious threat to malaria elimination efforts. Methods: Using a nationally representative cross-sectional study of 7,137 children under five years of age from the Democratic Republic of Congo (DRC), we tested 783 subjects with RDT-/PCR+ results using PCR assays to detect and confirm deletions of the pfhrp2 gene. Spatial and population genetic analyses were employed to examine the distribution and evolution of these parasites. Results: We identified 149 pfhrp2-deleted parasites, representing 6.4% of all P. falciparum infections country-wide (95% confidence interval 5.1-8.0%). Bayesian spatial analyses identified statistically significant clustering of pfhrp2 deletions near Kinshasa and Kivu. Population genetic analysis revealed significant genetic differentiation between wild-type and pfhrp2-deleted parasite populations (GST = .046, p ≤ .00001). Conclusions: Pfhrp2-deleted P. falciparum is a common cause of RDT-/PCR+ malaria among asymptomatic children in the DRC and appears to be clustered within select communities. Surveillance for these deletions is needed, and alternatives to HRP2-specific RDTs may be necessary.


Asunto(s)
Antígenos de Protozoos/genética , Eliminación de Gen , Malaria Falciparum/epidemiología , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Teorema de Bayes , Preescolar , Estudios Transversales , ADN Protozoario/aislamiento & purificación , República Democrática del Congo , Pruebas Diagnósticas de Rutina , Humanos , Malaria Falciparum/diagnóstico , Repeticiones de Microsatélite , Prevalencia
4.
Antimicrob Agents Chemother ; 59(9): 5097-106, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26033719

RESUMEN

para-Aminosalicylic acid (PAS) entered clinical use in 1946 as the second exclusive drug for the treatment of tuberculosis (TB). While PAS was initially a first-line TB drug, the introduction of more potent antitubercular agents relegated PAS to the second-line tier of agents used for the treatment of drug-resistant Mycobacterium tuberculosis infections. Despite the long history of PAS usage, an understanding of the molecular and biochemical mechanisms governing the susceptibility and resistance of M. tuberculosis to this drug has lagged behind that of most other TB drugs. Herein, we discuss previous studies that demonstrate PAS-mediated disruption of iron acquisition, as well as recent genetic, biochemical, and metabolomic studies that have revealed that PAS is a prodrug that ultimately corrupts one-carbon metabolism through inhibition of the formation of reduced folate species. We also discuss findings from laboratory and clinical isolates that link alterations in folate metabolism to PAS resistance. These advancements in our understanding of the basis of the susceptibility and resistance of M. tuberculosis to PAS will enable the development of novel strategies to revitalize this and other antimicrobial agents for use in the global effort to eradicate TB.


Asunto(s)
Ácido Aminosalicílico/farmacología , Antituberculosos/farmacología , Ácido Fólico/metabolismo , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/metabolismo , Pruebas de Sensibilidad Microbiana , Tuberculosis Resistente a Múltiples Medicamentos
5.
Antimicrob Agents Chemother ; 58(3): 1479-87, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24366731

RESUMEN

The mechanistic basis for the resistance of Mycobacterium tuberculosis to para-aminosalicylic acid (PAS), an important agent in the treatment of multidrug-resistant tuberculosis, has yet to be fully defined. As a substrate analog of the folate precursor para-aminobenzoic acid, PAS is ultimately bioactivated to hydroxy dihydrofolate, which inhibits dihydrofolate reductase and disrupts the operation of folate-dependent metabolic pathways. As a result, the mutation of dihydrofolate synthase, an enzyme needed for the bioactivation of PAS, causes PAS resistance in M. tuberculosis strain H37Rv. Here, we demonstrate that various missense mutations within the coding sequence of the dihydropteroate (H2Pte) binding pocket of dihydrofolate synthase (FolC) confer PAS resistance in laboratory isolates of M. tuberculosis and Mycobacterium bovis. From a panel of 85 multidrug-resistant M. tuberculosis clinical isolates, 5 were found to harbor mutations in the folC gene within the H2Pte binding pocket, resulting in PAS resistance. While these alterations in the H2Pte binding pocket resulted in reduced dihydrofolate synthase activity, they also abolished the bioactivation of hydroxy dihydropteroate to hydroxy dihydrofolate. Consistent with this model for abolished bioactivation, the introduction of a wild-type copy of folC fully restored PAS susceptibility in folC mutant strains. Confirmation of this novel PAS resistance mechanism will be beneficial for the development of molecular method-based diagnostics for M. tuberculosis clinical isolates and for further defining the mode of action of this important tuberculosis drug.


Asunto(s)
Ácido Aminosalicílico/farmacología , Antibacterianos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Péptido Sintasas/fisiología , Alelos , Sitios de Unión/genética , Sitios de Unión/fisiología , Farmacorresistencia Bacteriana/genética , Pruebas de Sensibilidad Microbiana , Mutación Missense/genética , Mutación Missense/fisiología , Mycobacterium bovis/efectos de los fármacos , Mycobacterium bovis/enzimología , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/genética , Péptido Sintasas/genética , Péptido Sintasas/metabolismo
6.
Front Cell Infect Microbiol ; 13: 1251135, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37662000

RESUMEN

Chlamydia trachomatis infection of ocular conjunctiva can lead to blindness, while infection of the female genital tract can lead to chronic pelvic pain, ectopic pregnancy, and/or infertility. Conjunctival and fallopian tube inflammation and the resulting disease sequelae are attributed to immune responses induced by chlamydial infection at these mucosal sites. The conserved chlamydial plasmid has been implicated in enhancing infection, via improved host cell entry and exit, and accelerating innate inflammatory responses that lead to tissue damage. The chlamydial plasmid encodes eight open reading frames, three of which have been associated with virulence: a secreted protein, Pgp3, and putative transcriptional regulators, Pgp4 and Pgp5. Although Pgp3 is an important plasmid-encoded virulence factor, recent studies suggest that chlamydial plasmid-mediated virulence extends beyond the expression of Pgp3. In this review, we discuss studies of genital, ocular, and gastrointestinal infection with C. trachomatis or C. muridarum that shed light on the role of the plasmid in disease development, and the potential for tissue and species-specific differences in plasmid-mediated pathogenesis. We also review evidence that plasmid-associated inflammation can be independent of bacterial burden. The functions of each of the plasmid-encoded proteins and potential molecular mechanisms for their role(s) in chlamydial virulence are discussed. Although the understanding of plasmid-associated virulence has expanded within the last decade, many questions related to how and to what extent the plasmid influences chlamydial infectivity and inflammation remain unknown, particularly with respect to human infections. Elucidating the answers to these questions could improve our understanding of how chlamydia augment infection and inflammation to cause disease.


Asunto(s)
Infecciones por Chlamydia , Humanos , Embarazo , Femenino , Virulencia/genética , Chlamydia trachomatis/genética , Conjuntiva , Inflamación
7.
Sci Rep ; 6: 38083, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27905500

RESUMEN

The ability to revitalize and re-purpose existing drugs offers a powerful approach for novel treatment options against Mycobacterium tuberculosis and other infectious agents. Antifolates are an underutilized drug class in tuberculosis (TB) therapy, capable of disrupting the biosynthesis of tetrahydrofolate, an essential cellular cofactor. Based on the observation that exogenously supplied p-aminobenzoic acid (PABA) can antagonize the action of antifolates that interact with dihydropteroate synthase (DHPS), such as sulfonamides and p-aminosalicylic acid (PAS), we hypothesized that bacterial PABA biosynthesis contributes to intrinsic antifolate resistance. Herein, we demonstrate that disruption of PABA biosynthesis potentiates the anti-tubercular action of DHPS inhibitors and PAS by up to 1000 fold. Disruption of PABA biosynthesis is also demonstrated to lead to loss of viability over time. Further, we demonstrate that this strategy restores the wild type level of PAS susceptibility in a previously characterized PAS resistant strain of M. tuberculosis. Finally, we demonstrate selective inhibition of PABA biosynthesis in M. tuberculosis using the small molecule MAC173979. This study reveals that the M. tuberculosis PABA biosynthetic pathway is responsible for intrinsic resistance to various antifolates and this pathway is a chemically vulnerable target whose disruption could potentiate the tuberculocidal activity of an underutilized class of antimicrobial agents.


Asunto(s)
Vías Biosintéticas/efectos de los fármacos , Farmacorresistencia Bacteriana/efectos de los fármacos , Antagonistas del Ácido Fólico/farmacología , Mycobacterium tuberculosis/genética , Bibliotecas de Moléculas Pequeñas/farmacología , Ácido 4-Aminobenzoico/metabolismo , Proteínas Bacterianas/genética , Vías Biosintéticas/genética , Clonación Molecular , Reposicionamiento de Medicamentos , Sinergismo Farmacológico , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Mycobacterium tuberculosis/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/síntesis química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA