Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Biol Reprod ; 103(6): 1260-1274, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32915209

RESUMEN

Evidence suggests that maternal obesity (MO) can aggravate placental function causing severe pathologies during the perinatal window. However, molecular changes and mechanisms of placental dysfunction remain largely unknown. This work aimed to decipher structural and molecular alterations of the placental transfer zone associated with MO. To this end, mice were fed a high fat diet (HFD) to induce obesity before mating, and pregnant dams were sacrificed at E15.5 to receive placentas for molecular, histological, and ultrastructural analysis and to assess unidirectional materno-fetal transfer capacity. Laser-capture microdissection was used to collect specifically placental cells of the labyrinth zone for proteomics profiling. Using BeWo cells, fatty acid-mediated mechanisms of adherens junction stability, cell layer permeability, and lipid accumulation were deciphered. Proteomics profiling revealed downregulation of cell adhesion markers in the labyrinth zone of obese dams, and disturbed syncytial fusion and detachment of the basement membrane (BM) within this zone was observed, next to an increase in materno-fetal transfer in vivo across the placenta. We found that fetuses of obese dams develop a growth restriction and in those placentas, labyrinth zone volume-fraction was significantly reduced. Linoleic acid was shown to mediate beta-catenin level and increase cell layer permeability in vitro. Thus, MO causes fetal growth restriction, molecular and structural changes in the transfer zone leading to impaired trophoblast differentiation, BM disruption, and placental dysfunction despite increased materno-fetal transfer capacity. These adverse effects are probably mediated by fatty acids found in HFD demonstrating the need for obesity treatment to mitigate placental dysfunction and prevent offspring pathologies.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Obesidad/inducido químicamente , Placenta/efectos de los fármacos , Trofoblastos/efectos de los fármacos , Animales , Biomarcadores , Adhesión Celular , Diferenciación Celular , Femenino , Regulación de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Placenta/fisiología , Placenta/ultraestructura , Embarazo , Proteómica , Distribución Aleatoria , Transcriptoma
2.
Am J Reprod Immunol ; 88(1): e13564, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35535415

RESUMEN

PROBLEM: Pregnancy complications and adverse birth outcomes are in part fueled by the rise in obesity and its associated co-morbidities in western societies. Fetal healthy development and placental function are disturbed by an obese, inflammatory environment associated with cytokines, such as interleukin-6, causing inadequate supply of nutrients to the fetus and perinatal programming with severe health consequences. METHOD OF STUDY: Mice received high fat diet (HFD) before and during gestation to induce obesity. We performed an IL-6 receptor antibody (MR16-1) treatment in pregnant obese mice at embryonic days E0.5, E7.5 and E14.5 to investigate whether this could ameliorate HFD-induced and obesity-associated placental dysfunction, evaluated by stereology and western blot, and improve offspring outcome at E15.5 in obese dams. RESULTS: We observed fewer fetuses below the 10th percentile and placental vascularization was less aggravated following MR16-1 treatment of obese dams, showing slight improvements in labyrinth zone (Lz) vascularization. However, placental dysfunction and fetal growth restriction were still apparent in MR16-1 dams compared to lean control dams. Molecular analysis showed significantly elevated IL-6 level in placentas of MR16-1 treated dams. CONCLUSION: Treatment with MR16-1 blocks IL-6 signaling in the placenta, but has only limited effects on preventing HFD-associated placental dysfunction and offspring outcomes in mice, suggesting further mechanisms in the deterioration of placental vascularization and fetal nutrient supply as a consequence of maternal obesity.


Asunto(s)
Dieta Alta en Grasa , Complicaciones del Embarazo , Animales , Femenino , Retardo del Crecimiento Fetal/etiología , Interleucina-6 , Ratones , Ratones Obesos , Obesidad/complicaciones , Placenta , Embarazo , Receptores de Interleucina-6
3.
Nutrients ; 14(11)2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35684088

RESUMEN

With the gaining prevalence of obesity, related risks during pregnancy are rising. Inflammation and oxidative stress are considered key mechanisms arising in white adipose tissue (WAT) sparking obesity-associated complications and diseases. The established anti-diabetic drug metformin reduces both on a systemic level, but only little is known about such effects on WAT. Because inhibiting these mechanisms in WAT might prevent obesity-related adverse effects, we investigated metformin treatment during pregnancy using a mouse model of diet-induced maternal obesity. After mating, obese mice were randomised to metformin administration. On gestational day G15.5, phenotypic data were collected and perigonadal WAT (pgWAT) morphology and proteome were examined. Metformin treatment reduced weight gain and visceral fat accumulation. We detected downregulation of perilipin-1 as a correlate and observed indications of recovering respiratory capacity and adipocyte metabolism under metformin treatment. By regulating four newly discovered potential adipokines (alpha-1 antitrypsin, Apoa4, Lrg1 and Selenbp1), metformin could mediate anti-diabetic, anti-inflammatory and oxidative stress-modulating effects on local and systemic levels. Our study provides an insight into obesity-specific proteome alterations and shows novel modulating effects of metformin in pgWAT of obese dams. Accordingly, metformin therapy appears suitable to prevent some of obesity's key mechanisms in WAT.


Asunto(s)
Metformina , Tejido Adiposo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Dieta Alta en Grasa/efectos adversos , Femenino , Humanos , Grasa Intraabdominal/metabolismo , Metformina/farmacología , Metformina/uso terapéutico , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/metabolismo , Embarazo , Proteoma/metabolismo , Proteínas de Unión al Selenio/metabolismo
4.
Endocr Connect ; 11(3)2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35148275

RESUMEN

Objective: Asprosin is a recently discovered hormone associated with obesity and diabetes mellitus. Little is known about asprosin's role during pregnancy, but a contribution of asprosin to pregnancy complications resulting from maternal obesity and gestational diabetes mellitus (GDM) is conceivable. We assessed the potential effects of obesity, GDM and other clinical parameters on maternal and fetal umbilical plasma asprosin concentrations and placental asprosin expression. Design: The Cologne-Placenta Cohort Study comprises 247 female patients, from whom blood and placentas were collected at the University Hospital Cologne. Methods: We studied the maternal and fetal umbilical plasma and placentas of pregnant women with an elective, primary section. Sandwich ELISA measurements of maternal and fetal umbilical plasma and immunohistochemical stainings of placental tissue were performed to determine the asprosin levels. Also, the relation between asprosin levels and clinical blood parameters was studied. Results: There was a strong correlation between the maternal and fetal plasma asprosin levels and both increased with GDM in normal-weight and obese women. Asprosin immunoreactivity was measured in cultivated placental cells and placental tissue. BMI and GDM were not but pre-pregnancy exercise and smoking were correlated with maternal and/or fetal asprosin levels. Placental asprosin levels were associated with maternal but not with fetal plasma asprosin levels and with BMI but not with GDM. Placental asprosin was related to maternal insulin levels and increased upon insulin treatment in GDM patients. Conclusions: Asprosin could potentially act as a biomarker and contribute to the clinical manifestation of pregnancy complications associated with maternal obesity.

5.
Nutrients ; 12(2)2020 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-31979004

RESUMEN

Obesity during pregnancy is a known health risk for mother and child. Since obesity is associated with increased inflammatory markers, our objectives were to determine interleukin-6 (IL-6) levels in obese mice and to examine the effect of IL-6 on placental endothelial cells. Placentas, blood, and adipose tissue of C57BL/6N mice, kept on high fat diet before and during pregnancy, were harvested at E15.5. Serum IL-6 levels were determined and endothelial cell markers and IL-6 expression were measured by qRT-PCR and western blot. Immunostaining was used to determine surface and length densities of fetal capillary profiles and placental endothelial cell homeostasis. Human placental vein endothelial cells were cultured and subjected to proliferation, apoptosis, senescence, and tube formation assays after stimulation with hyperIL-6. Placental endothelial cell markers were downregulated and the percentage of senescent endothelial cells was higher in the placental exchange zone of obese dams and placental vascularization was strongly reduced. Additionally, maternal IL-6 serum levels and IL-6 protein levels in adipose tissue were increased. Stimulation with hyperIL-6 provoked a dose dependent increase of senescence in cultured endothelial cells without any effects on proliferation or apoptosis. Diet-induced maternal obesity led to an IUGR phenotype accompanied by increased maternal IL-6 serum levels. In the placenta of obese dams, this may result in a disturbed endothelial cell homeostasis and impaired fetal vasculature. Cell culture experiments confirmed that IL-6 is capable of inducing endothelial cell senescence.


Asunto(s)
Células Endoteliales/metabolismo , Interleucina-6/metabolismo , Obesidad Materna/metabolismo , Placenta/metabolismo , Tejido Adiposo/metabolismo , Animales , Técnicas de Cultivo de Célula , Senescencia Celular , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Femenino , Feto/irrigación sanguínea , Homeostasis , Ratones , Ratones Endogámicos C57BL , Obesidad Materna/etiología , Embarazo
6.
J Clin Med ; 8(5)2019 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-31083566

RESUMEN

There is accumulating evidence for fetal programming of later kidney disease by maternal obesity or associated conditions. We performed a hypothesis-generating study to identify potentially underlying mechanisms. Female mice were randomly split in two groups and fed either a standard diet (SD) or high fat diet (HFD) from weaning until mating and during pregnancy. Half of the dams from both groups were treated with metformin ((M), 380 mg/kg), resulting in four experimental groups (SD, SD-M, HFD, HFD-M). Caesarean section was performed on gestational day 18.5. Fetal kidney tissue was isolated from cryo-slices using laser microdissection methods and a proteomic screen was performed. For single proteins, a fold change ≥1.5 and q-value <0.05 were considered to be statistically significant. Interestingly, HFD versus SD had a larger effect on the proteome of fetal kidneys (56 proteins affected; interaction clusters shown for proteins concerning transcription/translation, mitochondrial processes, eicosanoid metabolism, H2S-synthesis and membrane remodeling) than metformin exposure in either SD (29 proteins affected; clusters shown for proteins involved in transcription/translation) or HFD (6 proteins affected; no cluster). By further analysis, ATP6V1G1, THY1, PRKCA and NDUFB3 were identified as the most promising candidates potentially mediating reprogramming effects of metformin in a maternal high fat diet.

7.
Reprod Sci ; 22(6): 735-42, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25415335

RESUMEN

The soluble fms-like tyrosine kinase 1 (sFlt-1), known to be increased in the serum of preeclamptic patients, is a relevant factor in causing maternal symptoms like hypertension and proteinuria. In this study, we aimed to reveal whether hypoxia is a cause of increased sFlt-1 levels and inflammation markers in vivo and whether these symptoms can be attenuated by interleukin 6 (IL-6) depletion. For this purpose, pregnant wild-type (wt) mice or IL-6(-/-) mice on embryonic day 16 were placed under either normoxic (20.9% oxygen) or hypoxic (6% oxygen) conditions for 6 hours. This led to a rise of sFlt-1 levels in maternal serum, independent of the IL-6 status of the dam. Increased maternal sFlt-1 serum levels were, however, not due to an increase in sFlt-1 messenger RNA levels in the placenta. Moreover, there was no increase in inflammatory markers in neither wt mice nor IL-6(-/-) mice. This suggests that hypoxia alone does not contribute to the induction of an inflammatory placenta. Also, the hypoxia-induced rise in sFlt-1 levels seems not to be mediated by IL-6 in vivo.


Asunto(s)
Hipoxia/enzimología , Inflamación/enzimología , Interleucina-6/deficiencia , Receptor 1 de Factores de Crecimiento Endotelial Vascular/sangre , Animales , Modelos Animales de Enfermedad , Femenino , Edad Gestacional , Hipoxia/sangre , Hipoxia/genética , Hipoxia/inmunología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Inflamación/sangre , Inflamación/genética , Inflamación/inmunología , Interleucina-6/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Placenta/inmunología , Placenta/metabolismo , Embarazo , Regulación hacia Arriba , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA