Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Biomech Eng ; 136(11)2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25109533

RESUMEN

Study objectives were to develop, validate, and apply a method to measure three-dimensional (3D) internal strains in intact human discs under axial compression. A custom-built loading device applied compression and permitted load-relaxation outside of the magnet while also maintaining compression and hydration during imaging. Strain was measured through registration of 300 µm isotropic resolution images. Excellent registration accuracy was achieved, with 94% and 65% overlap of disc volume and lamellae compared to manual segmentation, and an average Hausdorff, a measure of distance error, of 0.03 and 0.12 mm for disc volume and lamellae boundaries, respectively. Strain maps enabled qualitative visualization and quantitative regional annulus fibrosus (AF) strain analysis. Axial and circumferential strains were highest in the lateral AF and lowest in the anterior and posterior AF. Radial strains were lowest in the lateral AF, but highly variable. Overall, this study provided new methods that will be valuable in the design and evaluation surgical procedures and therapeutic interventions.


Asunto(s)
Fuerza Compresiva , Imagenología Tridimensional , Disco Intervertebral , Imagen por Resonancia Magnética , Ensayo de Materiales/métodos , Estrés Mecánico , Humanos , Vértebras Lumbares , Ensayo de Materiales/instrumentación , Persona de Mediana Edad , Reproducibilidad de los Resultados
2.
Tomography ; 8(5): 2574-2587, 2022 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-36287814

RESUMEN

3D Single-breath Chemical Shift Imaging (3D-SBCSI) is a hybrid MR-spectroscopic imaging modality that uses hyperpolarized xenon-129 gas (Xe-129) to differentiate lung diseases by probing functional characteristics. This study tests the efficacy of 3D-SBCSI in differentiating physiology among pulmonary diseases. A total of 45 subjects-16 healthy, 11 idiopathic pulmonary fibrosis (IPF), 13 cystic fibrosis (CF), and 5 chronic obstructive pulmonary disease (COPD)-were given 1/3 forced vital capacity (FVC) of hyperpolarized Xe-129, inhaled for a ~7 s MRI acquisition. Proton, Xe-129 ventilation, and 3D-SBCSI images were acquired with separate breath-holds using a radiofrequency chest coil tuned to Xe-129. The Xe-129 spectrum was analyzed in each lung voxel for ratios of spectroscopic peaks, chemical shifts, and T2* relaxation. CF and COPD subjects had significantly more ventilation defects than IPF and healthy subjects, which correlated with FEV1 predicted (R = -0.74). FEV1 predicted correlated well with RBC/Gas ratio (R = 0.67). COPD and IPF had significantly higher Tissue/RBC ratios than other subjects, longer RBC T2* relaxation times, and greater RBC chemical shifts. CF subjects had more ventilation defects than healthy subjects, elevated Tissue/RBC ratio, shorter Tissue T2* relaxation, and greater RBC chemical shift. 3D-SBCSI may be helpful in the detection and characterization of pulmonary disease, following treatment efficacy, and predicting disease outcomes.


Asunto(s)
Fibrosis Quística , Fibrosis Pulmonar Idiopática , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Fibrosis Pulmonar Idiopática/diagnóstico por imagen , Protones , Imagen por Resonancia Magnética/métodos , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Espectroscopía de Resonancia Magnética , Gases
3.
Brain Imaging Behav ; 14(5): 1318-1327, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30511116

RESUMEN

Automated neuroimaging methods like FreeSurfer ( https://surfer.nmr.mgh.harvard.edu/ ) have revolutionized quantitative neuroimaging analyses. Such analyses provide a variety of metrics used for image quantification, including magnetic resonance imaging (MRI) volumetrics. With the release of FreeSurfer version 6.0, it is important to assess its comparability to the widely-used previous version 5.3. The current study used data from the initial 249 participants in the ongoing Chronic Effects of Neurotrauma Consortium (CENC) multicenter observational study to compare the volumetric output of versions 5.3 and 6.0 across various regions of interest (ROI). In the current investigation, the following ROIs were examined: total intracranial volume, total white matter volume, total ventricular volume, total gray matter volume, and right and left volumes for the thalamus, pallidum, putamen, caudate, amygdala and hippocampus. Absolute ROI volumes derived from FreeSurfer 6.0 differed significantly from those obtained using version 5.3. We also employed a clinically-based evaluation strategy to compare both versions in their prediction of age-mediated volume reductions (or ventricular increase) in the aforementioned structures. Statistical comparison involved both general linear modeling (GLM) and random forest (RF) methods, where cross-validation error was significantly higher using segmentations from FreeSurfer version 5.3 versus version 6.0 (GLM: t = 4.97, df = 99, p value = 2.706e-06; RF: t = 4.85, df = 99, p value = 4.424e-06). Additionally, the relative importance of ROIs used to predict age using RFs differed between FreeSurfer versions, indicating substantial differences in the two versions. However, from the perspective of correlational analyses, fitted regression lines and their slopes were similar between the two versions, regardless of version used. While absolute volumes are not interchangeable between version 5.3 and 6.0, ROI correlational analyses appear to yield similar results, suggesting the interchangeability of ROI volume for correlational studies.


Asunto(s)
Imagen por Resonancia Magnética , Sustancia Blanca , Encéfalo/diagnóstico por imagen , Sustancia Gris/diagnóstico por imagen , Hipocampo , Humanos , Procesamiento de Imagen Asistido por Computador , Neuroimagen , Sustancia Blanca/diagnóstico por imagen
4.
J Thorac Imaging ; 31(5): 285-95, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27428024

RESUMEN

The assessment of early pulmonary disease and its severity can be difficult in young children, as procedures such as spirometry cannot be performed on them. Computed tomography provides detailed structural images of the pulmonary parenchyma, but its major drawback is that the patient is exposed to ionizing radiation. In this context, magnetic resonance imaging (MRI) is a promising technique for the evaluation of pediatric lung disease, especially when serial imaging is needed. Traditionally, MRI played a small role in evaluating the pulmonary parenchyma. Because of its low proton density, the lungs display low signal intensity on conventional proton-based MRI. Hyperpolarized (HP) gases are inhaled contrast agents with an excellent safety profile and provide high signal within the lung, allowing for high temporal and spatial resolution imaging of the lung airspaces. Besides morphologic information, HP MR images also offer valuable information about pulmonary physiology. HP gas MRI has already made new contributions to the understanding of pediatric lung diseases and may become a clinically useful tool. In this article, we discuss the HP gas MRI technique, special considerations that need to be made when imaging children, and the role of MRI in 2 of the most common chronic pediatric lung diseases, asthma and cystic fibrosis. We also will discuss how HP gas MRI may be used to evaluate normal lung growth and development and the alterations occurring in chronic lung disease of prematurity and in patients with a congenital diaphragmatic hernia.


Asunto(s)
Enfermedades Pulmonares/diagnóstico por imagen , Pulmón/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Adolescente , Niño , Preescolar , Humanos , Lactante , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA