Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
J Immunol ; 192(11): 5245-56, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24795457

RESUMEN

Peptides that bind poorly to MHC class I molecules often elicit low-functional avidity T cell responses. Peptide modification by altering the anchor residue facilitates increased binding affinity and may elicit T cells with increased functional avidity toward the native epitope ("heteroclitic"). This augmented MHC binding is likely to increase the half-life and surface density of the heteroclitic complex, but precisely how this enhanced T cell response occurs in vivo is not known. Furthermore, the ideal heteroclitic epitope will elicit T cell responses that completely cross-react with the native epitope, maximizing protection and minimizing undesirable off-target effects. Such epitopes have been difficult to identify. In this study, using mice infected with a murine coronavirus that encodes epitopes that elicit high (S510, CSLWNGPHL)- and low (S598, RCQIFANI)-functional avidity responses, we show that increased expression of peptide S598 but not S510 generated T cells with enhanced functional avidity. Thus, immune responses can be augmented toward T cell epitopes with low functional avidity by increasing Ag density. We also identified a heteroclitic epitope (RCVIFANI) that elicited a T cell response with nearly complete cross-reactivity with native epitope and demonstrated increased MHC/peptide abundance compared with native S598. Structural and thermal melt analyses indicated that the Q600V substitution enhanced stability of the peptide/MHC complex without greatly altering the antigenic surface, resulting in highly cross-reactive T cell responses. Our data highlight that increased peptide/MHC complex display contributes to heteroclitic epitope efficacy and describe parameters for maximizing immune responses that cross-react with the native epitope.


Asunto(s)
Antígenos Virales/inmunología , Linfocitos T CD8-positivos/inmunología , Infecciones por Coronavirus/inmunología , Coronavirus/inmunología , Epítopos de Linfocito T/inmunología , Péptidos/inmunología , Sustitución de Aminoácidos , Animales , Antígenos Virales/genética , Linfocitos T CD8-positivos/patología , Coronavirus/genética , Infecciones por Coronavirus/genética , Epítopos de Linfocito T/genética , Células HeLa , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Ratones , Mutación Missense , Péptidos/genética , Proteínas Virales/genética , Proteínas Virales/inmunología
2.
Proc Natl Acad Sci U S A ; 110(14): 5570-5, 2013 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-23493558

RESUMEN

A reverse-genetics approach has been used to probe the mechanism underlying immune escape for influenza A virus-specific CD8(+) T cells responding to the immunodominant D(b)NP366 epitope. Engineered viruses with a substitution at a critical residue (position 6, P6M) all evaded recognition by WT D(b)NP366-specific CD8(+) T cells, but only the NPM6I and NPM6T mutants altered the topography of a key residue (His155) in the MHC class I binding site. Following infection with the engineered NPM6I and NPM6T influenza viruses, both mutations were associated with a substantial "hole" in the naïve T-cell receptor repertoire, characterized by very limited T-cell receptor diversity and minimal primary responses to the NPM6I and NPM6T epitopes. Surprisingly, following respiratory challenge with a serologically distinct influenza virus carrying the same mutation, preemptive immunization against these escape variants led to the generation of secondary CD8(+) T-cell responses that were comparable in magnitude to those found for the WT NP epitope. Consequently, it might be possible to generate broadly protective T-cell immunity against commonly occurring virus escape mutants. If this is generally true for RNA viruses (like HIV, hepatitis C virus, and influenza) that show high mutation rates, priming against predicted mutants before an initial encounter could function to prevent the emergence of escape variants in infected hosts. That process could be a step toward preserving immune control of particularly persistent RNA viruses and may be worth considering for future vaccine strategies.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Epítopos de Linfocito T/inmunología , Evasión Inmune/genética , Virus de la Influenza A/genética , Virus de la Influenza A/inmunología , Modelos Moleculares , Microglobulina beta-2/química , Animales , Sitios de Unión/genética , Linfocitos T CD8-positivos/virología , Cristalización , Epítopos de Linfocito T/genética , Citometría de Flujo , Genes MHC Clase I/genética , Ratones , Ratones Endogámicos C57BL , Mutagénesis Sitio-Dirigida , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN , Microglobulina beta-2/inmunología
3.
Proc Natl Acad Sci U S A ; 108(50): 19961-6, 2011 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-22135460

RESUMEN

Activated transcription of the bacteriophage T4 late genes, which is coupled to concurrent DNA replication, is accomplished by an initiation complex containing the host RNA polymerase associated with two phage-encoded proteins, gp55 (the basal promoter specificity factor) and gp33 (the coactivator), as well as the DNA-mounted sliding-clamp processivity factor of the phage T4 replisome (gp45, the activator). We have determined the 3.0 Å-resolution X-ray crystal structure of gp33 complexed with its RNA polymerase binding determinant, the ß-flap domain. Like domain 4 of the promoter specificity σ factor (σ(4)), gp33 interacts with RNA polymerase primarily by clamping onto the helix at the tip of the ß-flap domain. Nevertheless, gp33 and σ(4) are not structurally related. The gp33/ß-flap structure, combined with biochemical, biophysical, and structural information, allows us to generate a structural model of the T4 late promoter initiation complex. The model predicts protein/protein interactions within the complex that explain the presence of conserved patches of surface-exposed residues on gp33, and provides a structural framework for interpreting and designing future experiments to functionally characterize the complex.


Asunto(s)
Bacteriófago T4/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Subunidades de Proteína/química , Transactivadores/química , Proteínas Virales/química , Secuencia de Aminoácidos , Secuencia Conservada , Cristalografía por Rayos X , ARN Polimerasas Dirigidas por ADN , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Regiones Promotoras Genéticas/genética , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína/metabolismo , Homología de Secuencia de Aminoácido , Factor sigma/química , Transactivadores/metabolismo , Transcripción Genética , Proteínas Virales/metabolismo
4.
PLoS Biol ; 8(9)2010 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-20856905

RESUMEN

The Escherichia coli transcription system is the best characterized from a biochemical and genetic point of view and has served as a model system. Nevertheless, a molecular understanding of the details of E. coli transcription and its regulation, and therefore its full exploitation as a model system, has been hampered by the absence of high-resolution structural information on E. coli RNA polymerase (RNAP). We use a combination of approaches, including high-resolution X-ray crystallography, ab initio structural prediction, homology modeling, and single-particle cryo-electron microscopy, to generate complete atomic models of E. coli core RNAP and an E. coli RNAP ternary elongation complex. The detailed and comprehensive structural descriptions can be used to help interpret previous biochemical and genetic data in a new light and provide a structural framework for designing experiments to understand the function of the E. coli lineage-specific insertions and their role in the E. coli transcription program.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/química , Escherichia coli/enzimología , Modelos Moleculares , Secuencia de Aminoácidos , Microscopía por Crioelectrón , Cristalografía por Rayos X , Datos de Secuencia Molecular , Conformación Proteica , Homología de Secuencia de Aminoácido
5.
Sci Rep ; 4: 3993, 2014 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-24509977

RESUMEN

Exposure to naturally occurring variants of herpesviruses in clinical settings can have a dramatic impact on anti-viral immunity. Here we have evaluated the molecular imprint of variant peptide-MHC complexes on the T-cell repertoire during human cytomegalovirus (CMV) infection and demonstrate that primary co-infection with genetic variants of CMV was coincident with development of strain-specific T-cell immunity followed by emergence of cross-reactive virus-specific T-cells. Cross-reactive CMV-specific T cells exhibited a highly conserved public T cell repertoire, while T cells directed towards specific genetic variants displayed oligoclonal repertoires, unique to each individual. T cell recognition foot-print and pMHC-I structural analyses revealed that the cross-reactive T cells accommodate alterations in the pMHC complex with a broader foot-print focussing on the core of the peptide epitope. These findings provide novel molecular insight into how infection with naturally occurring genetic variants of persistent human herpesviruses imprints on the evolution of the anti-viral T-cell repertoire.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Infecciones por Citomegalovirus/inmunología , Citomegalovirus/genética , Citomegalovirus/inmunología , Subgrupos de Linfocitos T/inmunología , Antígenos Virales/inmunología , Reacciones Cruzadas/inmunología , Epítopos de Linfocito T/genética , Epítopos de Linfocito T/inmunología , Variación Genética/inmunología , Antígeno HLA-B8/genética , Antígeno HLA-B8/inmunología , Trasplante de Corazón , Humanos , Memoria Inmunológica/inmunología , Trasplante de Riñón , Trasplante de Pulmón , Activación de Linfocitos/inmunología , Inmunología del Trasplante
6.
Protein Sci ; 20(6): 986-95, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21416542

RESUMEN

The biochemical characterization of the bacterial transcription cycle has been greatly facilitated by the production and characterization of targeted RNA polymerase (RNAP) mutants. Traditionally, RNAP preparations containing mutant subunits have been produced by reconstitution of denatured RNAP subunits, a process that is undesirable for biophysical and structural studies. Although schemes that afford the production of in vivo-assembled, recombinant RNAP containing amino acid substitutions, insertions, or deletions in either the monomeric ß or ß' subunits have been developed, there is no such system for the production of in vivo-assembled, recombinant RNAP with mutations in the homodimeric α-subunits. Here, we demonstrate a strategy to generate in vivo-assembled, recombinant RNAP preparations free of the α C-terminal domain. Furthermore, we describe a modification of this approach that would permit the purification of in vivo-assembled, recombinant RNAP containing any α-subunit variant, including those variants that are lethal. Finally, we propose that these related approaches can be extended to generate in vivo-assembled, recombinant variants of other protein complexes containing homomultimers for biochemical, biophysical, and structural analyses.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/genética , Escherichia coli/enzimología , Ingeniería de Proteínas/métodos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos , ARN Polimerasas Dirigidas por ADN/aislamiento & purificación , Escherichia coli/genética , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/aislamiento & purificación , Proteínas Recombinantes/aislamiento & purificación , Eliminación de Secuencia , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA