Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 113(8): 1999-2004, 2016 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-26858429

RESUMEN

The Pliocene epoch (5.3-2.6 Ma) represents the most recent geological interval in which global temperatures were several degrees warmer than today and is therefore considered our best analog for a future anthropogenic greenhouse world. However, our understanding of Pliocene climates is limited by poor age control on existing terrestrial climate archives, especially in the Southern Hemisphere, and by persistent disagreement between paleo-data and models concerning the magnitude of regional warming and/or wetting that occurred in response to increased greenhouse forcing. To address these problems, here we document the evolution of Southern Hemisphere hydroclimate from the latest Miocene to the middle Pliocene using radiometrically-dated fossil pollen records preserved in speleothems from semiarid southern Australia. These data reveal an abrupt onset of warm and wet climates early within the Pliocene, driving complete biome turnover. Pliocene warmth thus clearly represents a discrete interval which reversed a long-term trend of late Neogene cooling and aridification, rather than being simply the most recent period of greater-than-modern warmth within a continuously cooling trajectory. These findings demonstrate the importance of high-resolution chronologies to accompany paleoclimate data and also highlight the question of what initiated the sustained interval of Pliocene warmth.


Asunto(s)
Clima , Australia , Paleontología
2.
Rapid Commun Mass Spectrom ; 31(20): 1749-1760, 2017 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-28792631

RESUMEN

RATIONALE: Potential post-mortem alteration to the oxygen isotope composition of biogenic silica is critical to the validity of palaeoclimate reconstructions based on oxygen isotope ratios (δ18 O values) from sedimentary silica. We calculate the degree of oxygen isotope alteration within freshly cultured diatom biogenic silica in response to heating and storing in the laboratory. METHODS: The experiments used freshly cultured diatom silica. Silica samples were either stored in water or dried at temperatures between 20 °C and 80 °C. The mass of affected oxygen and the associated silica-water isotope fractionation during alteration were calculated by conducting parallel experiments using endmember waters with δ18 O values of -6.3 to -5.9 ‰ and -36.3 to -35.0 ‰. Dehydroxylation and subsequent oxygen liberation were achieved by stepwise fluorination with BrF5 . The 18 O/16 O ratios were measured using a ThermoFinnigan MAT 253 isotope ratio mass spectrometer. RESULTS: Significant alterations in silica δ18 O values were observed, most notably an increase in the δ18 O values following drying at 40-80 °C. Storage in water for 7 days between 20 and 80 °C also led to significant alteration in δ18 O values. Mass balance calculations suggest that the amount of affected oxygen is positively correlated with temperature. The estimated oxygen isotope fractionation during alteration is an inverse function of temperature, consistent with the extrapolation of models for high-temperature silica-water oxygen isotope fractionation. CONCLUSIONS: Routinely used preparatory methods may impart significant alterations to the δ18 O values of biogenic silica, particularly when dealing with modern cultured or field-collected material. The significance of such processes within natural aquatic environments is uncertain; however, there is potential that similar processes also affect sedimentary diatoms, with implications for the interpretation of biogenic silica-hosted δ18 O palaeoclimate records.


Asunto(s)
Diatomeas/metabolismo , Isótopos de Oxígeno/metabolismo , Dióxido de Silicio/metabolismo , Diatomeas/citología , Calor , Espectrometría de Masas , Isótopos de Oxígeno/análisis , Dióxido de Silicio/química , Temperatura
3.
Glob Chang Biol ; 22(10): 3474-86, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27090595

RESUMEN

Quantitative reconstructions of terrestrial climate are highly sought after but rare, particularly in Australia. Carbon isotope discrimination in plant leaves (Δleaf ) is an established indicator of past hydroclimate because the fractionation of carbon isotopes during photosynthesis is strongly influenced by water stress. Leaves of the evergreen tree Melaleuca quinquenervia have been recovered from the sediments of some perched lakes on North Stradbroke and Fraser Islands, south-east Queensland, eastern Australia. Here, we examine the potential for using M. quinquenervia ∆leaf as a tracer of past rainfall by analysing carbon isotope ratios (δ(13) C) of modern leaves. We firstly assess Δleaf variation at the leaf and stand scale and find no systematic pattern within leaves or between leaves due to their position on the tree. We then examine the relationships between climate and Δleaf for a 11-year time series of leaves collected in a litter tray. M. quinquenervia retains its leaves for 1-4 years; thus, cumulative average climate data are used. There is a significant relationship between annual mean ∆leaf and mean annual rainfall of the hydrological year for 1-4 years (i.e. 365-1460 days) prior to leaf fall (r(2)  = 0.64, P = 0.003, n = 11). This relationship is marginally improved by accounting for the effect of pCO2 on discrimination (r(2)  = 0.67, P = 0.002, n = 11). The correlation between rainfall and Δleaf , and the natural distribution of Melaleuca quinquenervia around wetlands of eastern Australia, Papua New Guinea and New Caledonia offers significant potential to infer past rainfall on a wide range of spatial and temporal scales.


Asunto(s)
Isótopos de Carbono , Melaleuca , Australia , Carbono , Papúa Nueva Guinea , Hojas de la Planta , Lluvia
4.
Sci Rep ; 7: 44983, 2017 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-28361872

RESUMEN

The Younger Dryas Stadial (YDS) was an episode of northern hemispheric cooling which occurred within the Last Glacial Interglacial Transition (LGIT). A major driver for the YDS climate was a weakening of the Atlantic Meridional Overturning Circulation (AMOC). It has been inferred that the AMOC began to strengthen mid-YDS, producing a bipartite structure of the YDS in records from continental Europe. These records imply that the polar front and westerlies shifted northward, producing a warmer second phase of the YDS in Europe. Here we present multi-proxy data from the sediments of Lake Suigetsu (Japan), as evidence that a related bi-partition of the YDS also occurred in East Asia. Besides showing for the first time that the bi-partition was not limited to the North Atlantic/European region, the data also imply a climatic dipole between Europe and East Asia since the cold-warm characteristics are reversed at Lake Suigetsu. We suggest that changes in eastward moisture transport from the North Atlantic are the primary mechanism by which the teleconnection can be explained.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA