Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chembiochem ; : e202400430, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38900551

RESUMEN

The high specificity of human antibodies to blood group A and B antigens is impressive, especially when considering the structural difference between these antigens (tetrasaccharides) is a NHAc versus a OH-group on the terminal monosaccharide residue. It is well established that in addition to anti-A and anti-B there is a third antibody, anti-A,B capable of recognizing both A and B antigens. To analyze this AB specificity, we synthesized a tetrasaccharide, where the NHAc of the A antigen was replaced with NH2. This NH2-group was used to attach the glycan to an affinity resin, creating an AB-epitope (ABep) adsorbent where the critical site for recognition by A and B antibodies was not accessible, while the rest of the (conformationally compact) tetrasaccharide remained accessible. Anti-ABep antibodies were isolated from blood group O donors and found to have expected A,B-specificity against immobilized and red cell bound synthetic antigens, including ABep, and were able to agglutinate both A and B red cells. The amount of these anti-ABep (anti-A,B) antibodies found in the blood of group O donors was comparable to levels of anti-A and anti-B found in group B and A individuals. Using STD-NMR the location for the AB-epitope on the tetrasaccharide was found.

2.
Glycoconj J ; 37(1): 129-138, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31834559

RESUMEN

Modification of vaccine carriers by decoration with glycans can enhance binding to and even targeting of dendritic cells (DCs), thus augmenting vaccine efficacy. To find a specific glycan-"vector" it is necessary to know glycan-binding profile of DCs. This task is not trivial; the small number of circulating blood DCs available for isolation hinders screening and therefore advancement of the profiling. It would be more convenient to employ long-term cell cultures or even primary DCs from murine blood. We therefore examined whether THP-1 (human monocyte cell line) and DC2.4 (immature murine DC-like cell line) could serve as a model for human DCs. These cells were probed with a set of glycans previously identified as binding to circulating human CD14low/-CD16+CD83+ DCs. In addition, we tested a subpopulation of murine CD14low/-CD80+СD11c+CD16+ cells reported as relating to the human CD14low/-CD16+CD83+ cells. Manα1-3(Manα1-6)Manß1-4GlcNAcß1-4GlcNAcß bound to both the cell lines and the murine CD14low/-CD80+СD11c+CD16+ cells. Primary cells, but not the cell cultures, were capable of binding GalNAcα1-3Galß (Adi), the most potent ligand for binding to human circulating DCs. In conclusion, not one of the studied cell lines proved an adequate model for DCs processes involving lectin binding. Although the glycan-binding profile of BYRB-Rb (8.17)1Iem mouse DCs could prove useful for assessing human DCs, important glycan interactions were missing, a situation which was aggravated when employing cells from the BALB/c strain. Accordingly, one must treat results from murine work with caution when seeking vaccine targeting of human DCs, and certainly should avoid cell lines such as THP-1 and DC2.4 cells.


Asunto(s)
Células Dendríticas/metabolismo , Polisacáridos/metabolismo , Animales , Humanos , Lectinas/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Polisacáridos/química , Unión Proteica , Células THP-1
3.
J Vis Exp ; (144)2019 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-30829318

RESUMEN

The repertoire of circulating anti-carbohydrate antibodies of a given individual is often associated with its immunological status. Not only the individual immune condition determines the success in combating internal and external potential threat signals, but also the existence of a particular pattern of circulating anti-glycan antibodies (and their serological level variation) could be a significant marker of the onset and progression of certain pathological conditions. Here, we describe a Printed Glycan Array (PGA)-based methodology that offers the opportunity to measure hundreds of glycan targets with very high sensitivity; using a minimal amount of sample, which is a common restriction present when small animals (rats, mice, hamster, etc.) are used as models to address aspects of human diseases. As a representative example of this approach, we show the results obtained from the analysis of the repertoire of natural anti-glycan antibodies in BALB/c mice. We demonstrate that each BALB/c mouse involved in the study, despite being genetically identical and maintained under the same conditions, develops a particular pattern of natural anti-carbohydrate antibodies. This work claims to expand the use of PGA technology to investigate repertoire (specificities) and the levels of circulating anti-carbohydrates antibodies, both in health and during any pathological condition.


Asunto(s)
Anticuerpos/sangre , Carbohidratos/inmunología , Análisis por Micromatrices/métodos , Animales , Biomarcadores/sangre , Humanos , Ratones Endogámicos BALB C , Polisacáridos/inmunología
4.
Carbohydr Res ; 449: 65-84, 2017 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-28738267

RESUMEN

Gram scale synthesis of A (type 2) and B (type 2) tetrasaccharides in the form of 3-aminopropyl glycosides is proposed starting from 3-O-benzoyl-1,6-anhydro-N-acetylglucosamine. Its galactosylation followed by re-protection gave lactosamine derivative with single free 2'-OH group in total yield 75%. Standard fucosylation and next run of re-protection in total yield 88% gave a trisaccharide Fuc-Gal-anhydroGlcNAc with single free 3'-OH group. Its standard α-galactosylation gave protected B (type 2) tetrasaccharide. For synthesis of correspondent A tetrasaccharide seven different 2-azido-2-deoxygalactosyl (GalN3) donors were tested: 6-O-acetyl-3,4-O-isopropylidene-GalN3 thioglycoside was shown to provide the best yield (89%) and stereoselectivity (α/ß = 24:1). Further 1,6-anhydro cycle opening, spacer-arming and complete deprotection resulted in the target 3-aminopropyl glycosides of A (type 2) and B (type 2) tetrasaccharides, yields 87 and 85% correspondingly.


Asunto(s)
Acetilglucosamina/análogos & derivados , Oligosacáridos/química , Oligosacáridos/síntesis química , Acetilglucosamina/química , Técnicas de Química Sintética
5.
Carbohydr Res ; 445: 23-31, 2017 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-28388443

RESUMEN

Our understanding of biological role of glycans O-sulfation remains at the level of beginners due to microheterogeneity, lability and other difficulties of exact structural assignment. Partially, problem of functional investigations, especially determination of glycoepitope specificity of carbohydrate-binding proteins could be solved with the help of synthetic glycans of certain structure. Here we summing up our synthetic efforts in creation of synthetic O-sulfatome, and bring together all the synthesized in our group sulfated glycans, both existing in nature, yet undiscovered but biochemically licit, and completely unnatural. All glycans have aminoalkyl spacer group allowing immobilization on a chip. We exemplify the capabilities of O-sulfoglycan microarray (containing >70 ligands) for profiling human natural antibodies; for a number of glycans O-sulfation dramatically changes interaction with human antibodies.


Asunto(s)
Anticuerpos/inmunología , Polisacáridos/síntesis química , Polisacáridos/inmunología , Sulfatos/química , Secuencia de Carbohidratos , Técnicas de Química Sintética , Humanos , Polisacáridos/química
6.
Carbohydr Res ; 430: 59-71, 2016 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-27196314

RESUMEN

Herein we report the synthesis of 3-aminopropyl glycosides of A (type 2) and B (type 2) tetrasaccharides via [3 + 1] block scheme. Peracetylated trichloroacetimidates of A and B trisaccharides were used as glycosyl donors. The well-known low reactivity of 4-OH group of N-acetyl-d-glucosamine forced us to test four glucosamine derivatives (3-Bz-1,6-anhydro-GlcNAc and 3-trifluoroacetamidopropyl ß-glycosides of 3-Ac-6-Bn-GlcNAc, 3-Ac-6-Bn-GlcN3, and 3-Ac-6-Bn-GlcNAc2) to select the best glycosyl acceptor for the synthesis of type 2 tetrasaccharides. The desired tetrasacchrides were not isolated, when 3-trifluoroacetamidopropyl glycosyde of 3-Ac-6-Bn-GlcNAcß was glycosylated. Glycosylation of 3-Bz-1,6-anhydro-GlcNAc derivative resulted in α-glycoside as a major product. High stereospecificity was achieved only in the synthesis of B (type 2) tetrasaccharide, when 3-trifluoroacetamidopropyl 3-Ac-6-Bn-GlcNAc2ß was applied as the glycosyl acceptor (ß/α 5:1), whereas glycosylation with trichloroacetimidate of A trisaccharide was not stereospecific (ß/α 1.3:1). Glycosylation of 3-trifluoroacetamidopropyl glycoside of 3-Ac-6-Bn-GlcN3ß with trichloroacetimidates of A and B trisaccharides provided the same stereochemical yield (ß/α 1.5:1).


Asunto(s)
Sistema del Grupo Sanguíneo ABO/química , Oligosacáridos/síntesis química , Secuencia de Carbohidratos , Técnicas de Química Sintética , Glicosilación , Humanos , Oligosacáridos/química , Piranos/química
7.
Carbohydr Res ; 435: 83-96, 2016 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-27721143

RESUMEN

Seven lipophilic constructs containing Lewis (Lea, Leb, Ley) or chimeric Lewis/ABH (ALeb, BLeb, ALey, BLey) glycans were obtained starting from corresponding oligosaccharides in form of 3-aminopropyl glycosides. ALeb and BLeb pentasaccharides were synthesized via [3 + 1] blockwise approach. The constructs (neoglycolipids, or FSLs) were inserted in erythrocyte membrane, and obtained "kodecytes" were used to map the immunochemical specificity of historical and contemporary monoclonal and polyclonal blood group system Lewis reagents.


Asunto(s)
Antígenos del Grupo Sanguíneo de Lewis/química , Polisacáridos/síntesis química , Polisacáridos/inmunología , Anticuerpos Monoclonales/metabolismo , Membrana Eritrocítica/inmunología , Humanos , Antígenos del Grupo Sanguíneo de Lewis/inmunología , Estructura Molecular , Polisacáridos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA